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Abstract 

With historical roots linked to life sciences, species diffusion has inspired dynamic 
models for infectious disease spreading. However, drawbacks have been raised 
towards the inclusion of people’s displacement effects, whose ordered motion might 
refer to species convection within transport phenomena perspective. By 
transcending usual geometric role of spatial coordinates, the present work proposes 
a surrogate mathematical description via dimensionless generalized coordinates as 
intended to categorize people, whether or not infected, in terms of age and 
comorbidities. Accordingly, while diffusive infection refers to random motion of 
categorized people, convective infection can be additionally invoked and assigned to 
“streamwise” (i.e., ontology-driven) people’s motion. With infected-people fraction 
as dimensionless dependent variable, the governing partial differential equation 
equally considers source and sink terms referring respectively to contamination-
reinfection and recovery-death rates. Such epidemic transport model is preliminary 
applied to SARS-CoV-2 spreading (i.e., COVID-19 dynamics) among categorized 
people and trial numerical simulations are performed in view of extant infection data 
from Florida (USA), here taken as case study. Prospective extensions for the 
proposed epidemic transport model are addressed (e.g., diffusive infection in 
inhomogeneous media and human’s displacement rheology). 
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1. Introduction 

Caused by new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-19 was first 

identified in December 2019 as patients were diagnosed with unknown-origin pneumonia in Wuhan, China 

(Wiersinga et al., 2020). By generating a range of diseases in humans (e.g. respiratory, gastrointestinal or 
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neurological diseases), coronaviruses are large enveloped single-stranded RNA viruses found in either 

humans or other mammals (e.g. dogs, cats, chickens, cattle, pigs, and birds). Coronaviruses typically tackled 

in clinical practice include 229E, OC43, NL63 and HKU1, which generally bring about usual cold symptoms 

in immunocompetent individuals. SARS-CoV-2 is the third coronavirus globally spread in the past two 

decades (Zhu et al., 2020). With its pandemic recognized on March 11 2020 (WHO, 2020a), COVID-19 has 

precipitously and significantly increased the number of pneumonia hospitalizations, along with various 

disease. COVID-19 infection can be asymptomatic or evidenced by wide spectrum of symptoms ranging from 

upper respiratory tract infection to life-threatening sepsis. 

Bearing in mind likely restricted access to health services, social distancing has been claimed as essential 

public health response to COVID-19 pandemic (Shen et al., 2020). As means to relieve pressure on health 

systems, social distancing aims at decreasing COVID-19 transmission, thus reducing the number of infected 

people to potentially spread SARS-CoV-2 (Binda et al., 2020). Besides age, comorbidities with greater risk 

factors for negative evolution of COVID-19 (WHO, 2020b) include cardiovascular diseases (10.5% mortality 

rates), diabetes (7.3% mortality rates), chronic respiratory diseases (6.3% mortality rates), arterial 

hypertension (6.0% mortality rates) and cancer (5.6% mortality rates). Hospital mortality due to COVID-19 

is usually about 15-20% but it might rise up to 40% among patients requiring admission to intensive care 

unit (ICU). In consideration of patients’ age, hospital mortality ranges from less than 5% among patients 

under 40 years of age up to 35% for those aged 70 to 79 years while surpassing 60% for 80-89 years old 

patients (Richardson et al., 2020). 

In view of that, relevant points in epidemiological models for pandemic diseases such as COVID-19 should 

include (but are definitely not restricted to) human ontology and/or comorbidities. A comprehensive 

mathematical framework should contemplate either cultural particularities or behavioral changes (Acuña-

Zegarra et al., 2020) with respect to not only input model parameters or data but also in regard to output 

results or predictions. 

Ultimately inspired by the long-standing work of (Kermack & McKendrick, 1927), compartmental models for 

epidemic spreading have recurrently relied on systems of ordinary differential equations (Bailey, 1975; 

Hethcote, 1989; Brauer & Castillo-Chávez, 2012; Blyuss & Kyrychko, 2021). In those models, people are 

allowed to ‘flow’ through different compartments (namely S = susceptible, E = exposed, I = infectious, R = 

recovered) so that labels indicate conceivable flow patterns (e.g. SIR, SIS, SEIR, SEIS, or SEIRS), which can be 

extended to include other compartments (e.g. P = prodromal cases, M = mildly symptomatic cases, H = cases 

requiring hospitalization, D = cases dying in hospital) (Overton et al. 2020). Despite people are actually 

moving around (i.e. changing their positions in space), dynamic epidemiologic models are usually of zero-

order dependence on spatial coordinates. 

While COVID-19 spread from contact surfaces (e.g. touching surfaces with viruses) is indeed a possible 

transmission mode, epidemiological studies have pointed to aerosols (i.e. small droplets suspended in the 

air) as major infection route. Hence, droplets expelled from speech, coughing and sneezing during face-to-

face exposures comprise habitual transmission means. While aerosol spreading among humans remains 

feebly studied, estimates suggest that 48-62% COVID-19 transmission occurs through pre-symptomatic 

carriers (Wiersinga et al., 2020). Prolonged exposure to infected person (less than 2 m apart for at least 15 

min) and shorter exposures to symptomatic individuals (e.g. coughing) are assigned to increased risk of 

transmission due to virus dispersion in aerosols. 
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Models inspired by reaction-diffusion processes have been proposed in mathematical epidemiology as well 

(Medlock, 2004; Ducrot and Magal, 2009; Belik et al., 2011). In those dynamic models, quantities depend not 

only on time but also on further independent variables and they become mathematically expressed in terms 

of partial differential equations (PDEs). In diffusion-like infectious disease models (Sabel et al., 2009), while 

cardinal directions have been assigned as independent variables, drawbacks have been pointed to proper 

incorporation of people’s displacement effects (Medlock, 2004). 

As exemplified in (David & Rabi, 2020), observable phenomena can be modeled by following alternative 

pathways. With respect to COVID-19 dynamics, time branching process may model outbreak early days 

(Levesque et al., 2021) whereas the reproductive number can indicate whether an emerging disease will 

become epidemic (Shaw and Kennedy, 2021). For infectious disease spreading, unusual approaches might 

extend reaction-diffusion epidemic models towards description via generalized coordinates (not restricted 

to their spatial role) as means to suitably include convective contribution to disease spreading. 

As discussed in section 3.1, generalized coordinates are here envisaged to categorize people in terms of age, 

comorbidities, or social activity level. While age-structured transport equations have been used to model 

spatial dynamic of vole populations (Donadello et al., 2021), importance of categorizing individuals in 

heterogeneous populations for mathematical epidemiology purposes has been addressed in view of herd 

immunity to SARS-CoV-2 (Britton et al., 2020). 

As far as population biology modeling is concerned, COVID-19 pandemic has received unprecedented 

attention (Rosenberg, 2021). Motivated by scientific ‘what-if’ impetus, the present work envisions a 

surrogate model pathway for mathematical epidemiology in terms of (dimensionless) generalized 

coordinates and transport phenomena. Accordingly, theoretical concepts are discussed next, followed by 

prospective connections and/or adjustments towards infectious disease spreading. 

2. Transport equation of conserved quantities 

Transport phenomena are triggered and upheld by concentration differences, where ‘concentration’ refers 

to some (say) ‘abundance degree’ of physical quantities under analysis (e.g. momentum, energy, chemical 

species, or electric charge). Those observable quantities allegedly follow universal conservation principles, 

which are conceived and mathematically expressed by considering assorted contributions to overall balance 

in a ‘hosting’ medium. 

In transport phenomena, conservation balances may comprise diffusive contribution due to interactions 

between the transported quantity and the hosting medium as well as convective contribution from external 

actions on the hosting medium itself. Additionally, the transported quantity can be locally consumed and/or 

generated. As those phenomena concurrently occur, they are modeled altogether in the so-called transport 

equation – a classic PDE in which the transported quantity is a function of not only time but also spatial 

coordinates. 

Often linked to scalar field transport in an incompressible flow, the transport equation describes how a 

physical quantity is transferred across its hosting medium. It can be seen as the generalization of continuity 

equation (Rodi, 2017) as this latter equation is limited to mass conservation while the convection-diffusion 

equation describes continuity and conservation of any scalar field in space (May, 2017). 
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The continuity principle stated that the variation rate of a scalar quantity in a differential control volume 

must account for flow as well as diffusion of such scalar, both into and out of this volume, along with 

generation and/or consumption rates therein. From the mathematical viewpoint (Peube, 2009), this balance 

is expressed by the following equation: 

𝜕φ

𝜕𝑡
+ ∇ ∙ 𝐣 = 𝑆φ           (1) 

where φ is the scalar field under analysis, j is φ-flux vector through volume boundaries (i.e., control surface), 

and Sφ comprises φ source/sink in the control volume. Mathematically, ∂φ/∂t gives the local variation rate 

of scalar quantity φ, ∇∙j is the net φ-balance entering and exiting the control volume, and Sφ represents either 

φ generation or consumption inside the volume. 

The transport equation, Eq. (1), can be further detailed by either developing or adapting its terms. 

Nonetheless, prior to discussing the prospective use of the transport equation in mathematical epidemiology, 

its underlying concepts are concisely discussed in what follows. For more details, the reader may refer to 

long-established textbooks on transport phenomena (Sissom and Pitts, 1972; Bennet and Myers, 1974; Bird 

et al., 2007). 

2.1. Extensive and intensive quantities 

Observable quantities can be categorized as either extensive or intensive. Values of the former depend on 

system extension such as area, volume, amount of matter, mass, and force. In opposition, values of intensive 

quantities might vary from point to point within the system such as pressure, stress, concentration, density, 

and temperature. 

Extensive and intensive quantities can be interconnected. For example, suitably chosen for this work, let dNi 

be the amount of some chemical species (here identified by subscript i) within a differential volume dV about 

a given point (i.e., spatial position) in a 3-D solution domain. From those two differential extensive quantities 

dNi and dV, species concentration Ci can be defined as: 

𝐶𝑖 =
d𝑁𝑖

d𝑉
           (2) 

which is an intensive quantity. Conversely, if species concentration Ci is point-to-point known in a given 

system volume V, its total amount Ni can be retrieved as: 

𝑁𝑖 = ∫ d𝑁𝑖 = ∫ 𝐶𝑖 d𝑉          (3) 

with the integration being performed over the whole system. 

Two particularities are of interest at this point. Firstly, in 2-D domains those previous mathematical relations 

spatially reduce to: 

𝐶𝑖 =
d𝑁𝑖

d𝐴
     ↔     𝑁𝑖 = ∫ d𝑁𝑖 = ∫ 𝐶𝑖 d𝐴        (4) 
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where species concentration Ci is integrated on area-basis so as to provide the total amount Ni. Further 

simplification to 1-D (i.e. linear) domains is here omitted for brevity. Secondly, let dN be the total amount of 

all species within dV (or dA) so that: 

d𝑁 = ∑ d𝑁𝑖𝑖      and     𝑁 = ∫ d𝑁        (5) 

where N is the total amount of all species within the system. Accordingly, it is sometimes convenient to 

mathematically describe species concentration in dimensionless form as: 

χ𝑖 =
d𝑁𝑖

d𝑁
=

d𝑁𝑖/d𝑉

d𝑁/d𝑉
=

𝐶𝑖

𝐶
          (6) 

where χi is referred to as species fraction (or amount fraction), which is an intensive quantity, whereas C is 

whole system concentration with all species included. 

While some conservation laws (balance equations) are expressed in terms of variation rates of extensive 

quantities, detailed knowledge of intensive quantities is essential to retrieve their extensive counterparts. 

Moreover, it is precisely point-to-point description of intensive quantities that may help spotting 

inefficiencies (i.e., undesired values) to be locally optimized. Comprehensive (i.e., point-to-point) 

mathematical description is achieved by putting forward and solving governing differential equations for 

intensive quantities (de Souza-Santos, 2010). 

2.2. Continuum hypothesis 

Equations (2)-(6) implicitly invoke the continuum hypothesis, which treats any medium as having no voids, 

i.e., a continuum solution domain. It prevails whenever a representative number of constituent elements 

populate any differential volume dV or area dA to the point where individual behaviors can be overlooked. 

In other words, the smallest dV or dA to validate the continuum hypothesis must have enough elements so 

that statistical average of their effects (e.g., on intensive quantities) no longer depends on their probabilistic 

state. Such smallest dV or dA is then referred to as a ‘point’ in the solution domain, being very small if 

compared to bulk system dimensions. 

Under continuum hypothesis, any intensive quantity can be modeled as steadily varying in space and time 

(Barton, 1992; Ørstavik et al., 2000). In view of that, species fraction χi can be mathematically represented 

by a continuous function of position r and time t, which in 3-D Cartesian coordinates becomes: 

χ𝑖(𝐫, 𝑡) = χ𝑖(𝑥, 𝑦, 𝑧, 𝑡) (7) 

where 𝐫 = 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤, being i, j and k orthogonal unit vectors. In 2-D model frameworks, one coordinate 

(say z) is declined while in 1-D model only one coordinate (e.g., x) remains. 

2.3. Lagrangian and Eulerian specifications 

Mathematical modeling of transport phenomena and/or fluid flow might follow distinct descriptions (Leal, 

2007; Slattery at al., 2007). If individual elements (e.g., suspension particles) can be easily and unceasingly 

identified in the flow field, Lagrangian method can be invoked to pursue those elements in space and time. 

Formal description of individual trajectories requires ‘labeling’ all elements while tracking down their 

motion together with mutual interactions (if any). 
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Other than chasing constituent elements, specific positions (e.g., control points) in the solution domain can 

be observed over time as system dynamically evolves. This is the very spirit of Eulerian method, which aims 

at describing systems in terms of intensive quantities properly defined as functions of position and time. The 

mathematical idea of ‘field’ naturally arises as means to describe system dynamic evolution in terms of 

intensive quantities. 

In a ‘theatrical’ metaphoric comparison, Lagrangian method is mostly concerned with the ‘cast’ or specific 

‘actors’ whereas Eulerian method pays attention to the ‘stage’ or specific places therein. However, and almost 

paradoxically, governing differential (balance) equations for intensive quantities (stepping-stone concepts 

in Eulerian method) are obtained from the Lagrangian description of a differential constituent element as it 

moves dr during advancing time step dt. 

Abovementioned mathematical artifice leads to the material derivative operator D/Dt, also known as total 

or substantial derivative. Accordingly, if χi = χi (r, t) is species fraction at position r and time t, its material 

derivative is defined as: 

Dχ𝑖

D𝑡
=

∂χ𝑖

∂𝑡
+ 𝐯 ∙ ∇χ𝑖           (8) 

where v is suitably identified as flow velocity and ∇ is del (or nabla) operator here applied to fraction scalar 

field χi as gradient, i.e., ∇χi = grad χi. In Cartesian coordinates, those two vector entities become expressed 

as: 

𝐯 = 𝑣𝑥𝐢 + 𝑣𝑦𝐣 + 𝑣𝑧𝐤     and     ∇=
∂

∂𝑥
𝐢 +

∂

∂𝑦
𝐣 +

∂

∂𝑧
𝐤       (9) 

This proper velocity identification holds for dt → 0 as Lagrangian and Eulerian descriptions coincide or, by 

putting it another way, as particle trajectories (i.e. individual constituents’ behavior) instantaneously 

coincide with flow streamlines (i.e. bulk medium’s behavior). 

2.4. Transport equation for intensive quantities 

In a flowing hosting medium, governing differential equations for intensive quantities transported can be 

derived from conservation laws by following Eulerian method. In terms of material derivative, Eq. (8), the 

resulting transport equation can be adapted to fraction χi as: 

∂χ𝑖

∂𝑡
+ 𝐯 ∙ ∇χ𝑖 = ∇ ∙ (𝐷𝑖,𝑚∇χ𝑖) + 𝑆𝑖         (10) 

where Di, m is the diffusivity of species ‘i’ in hosting medium ‘m’ (where it diffuses) and Si refers to either 

source or sink rates. Table 1 summarizes possible interpretations and features of mathematical terms in Eq. 

(10). By assuming uniform diffusivity Di, m while splitting Si into species generation and consumption rates, 

i.e., Si = Si,gen  Si,cons, Eq. (10) in 2-D Cartesian coordinates becomes: 

∂χ𝑖

∂𝑡
+ 𝑣𝑥

∂χ𝑖

∂𝑥
+ 𝑣𝑦

∂χ𝑖

∂𝑦
= 𝐷𝑖,𝑚 (

𝜕2χ𝑖

∂𝑥2 +
𝜕2χ𝑖

∂𝑦2 ) + 𝑆𝑖,gen − 𝑆𝑖,cons      (11) 
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Table 1: Interpretation of terms in the transport equation as adapted to species fraction 

∂χi/∂t 

Transient term: refers to local variation of species fraction with respect to time. In 

steady-state scenarios this term is null (i.e. species fraction remains constant over time 

but still may vary from point to point in the solution domain). 

v∙∇χi 

Convective term: refers to streamwise transport due to orderly motion of the bulk 

(hosting) medium; therefore, it models how species are dragged to/from elsewhere. It 

is of parabolic nature (i.e. 1st-order spatial derivative) while modulated by bulk 

medium velocity. 

∇∙(Di,m∇χi) 

Diffusive term: refers to species transport due to local gradients in the bulk medium. It 

is of elliptic nature (2nd-order spatial derivative). If species diffusivity Di, m is spatially 

uniform (i.e., homogeneous), this term becomes written via Laplacian operator, 

𝐷𝑖,𝑚∇2χ𝑖. 

𝑆𝑖  

Source/sink term: it can be a collection of (and be split into) terms whose underlying 

nature is unrelated from other terms in the transport equation. Typically, it may refer 

to (i.e., be split into) local generation Si,gen and/or consumption Si,cons rates. 

 

3. Transport equation towards mathematical epidemiology 

In order to apply Eq. (10) to mathematical epidemiology, variables and parameters in this governing EDP 

should be reinterpreted under disease spreading viewpoint. In particular, this work puts forward a paradigm 

shift in terms of the prospective use of generalized coordinates in place of exclusively using geometric 

coordinates. The resulting governing EDP may be a springboard towards an ‘epidemic transport model’, 

whose adaptation to COVID-19 is here envisaged (in section 4). 

3.1. Independent variables: time and generalized coordinates 

When modeling infectious disease spreading, time t should render no misperception as independent variable 

while Cartesian coordinates could supposedly refer to cardinal directions in 2-D domains, e.g. x for west-east 

direction and y for south-north direction in Eq. (11). In transport phenomena, this spatially biased 

association forthrightly follows as the dimensions of flow velocity v and species diffusivity Di,m are 

respectively [length] [time]1 and [length]2 [time]1, in principle. 

By transcending their systematic geometric role, let independent variables x and y be assigned to (say) 

generalized coordinates, which must be suitably normalized for dimensional consistency purposes. By 

rendering dimensionless coordinates, this normalization is two-fold necessary, namely: 

 Streamwise velocity v can be alternatively interpreted as contamination velocity, whose 

multidimensional components are defined in terms of time and dimensionless generalized 

coordinates, thus with the same dimensions, namely [time]1 (section 3.3); 
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 Diffusivity Di,m become dimensionally consistent for any ‘multidimensional generalized’ domain as 

its dimensions simplify to [time]1, regardless of the generalized coordinates system (section 3.4). 

In a dynamic 1-D model, for instance, generalized coordinate x could be associated to inhabitants’ age as 

measured in some dimensionless continuous scale, e.g. normalized by life expectancy. In 2-D modeling, 

generalized coordinate y could be additionally assigned to any comorbidity related to COVID-19 in a suitable 

scale, e.g. obesity as measured through body mass index (BMI) prime. Defined as the ratio of actual BMI to 

optimal BMI upper limit, BMI prime indicates to what extent a person deviates from maximum optimal BMI, 

being indeed a dimensionless number, i.e. it is conveniently independent from units. 

3.2. Dependent variables: infected people and infected fraction 

Bearing in mind Eqs. (2)-(6), the epidemic transport model identifies Ni as the number of infected people 

among N inhabitants in a particular country, state, region, county or town. In this descending geographic 

order, can the analyzed system become as small as a district or neighborhood? As the continuum hypothesis 

must be properly fulfilled, care must be always exercised and, from now on, it is assumed the continuum 

hypothesis actually holds. 

In the epidemic transport model, Ni and χi arise as dependent variables interrelated via Eq. (6). The former 

is an extensive variable depending only on time, i.e. Ni = Ni(t), while the latter is an intensive dimensionless 

variable to be modeled as a continuous function of time and dimensionless generalized coordinates in line 

with Eq. (7). 

At this point, the so-called ‘diluted mixture’ rationale is invoked so as to model infected people likewise 

diluted species transport in reactive medium (i.e. including generation and/or consumption rates). 

Consequently, N = constant is assumed, which means that the dynamic size of the population under analysis 

is not severely affected by the infectious disease. In view of Eqs. (5) and (7), the instantaneous number of 

infected people in a given solution domain can be assessed as: 

𝑁𝑖(𝑡) = 𝑁 ∫ χ𝑖(𝐫, 𝑡) d𝐫 (12) 

where the integration is performed over dimensionless generalized coordinates r. It is worth remembering 

that infected-people fraction χi is the transported intensive quantity that comes from the solution of Eq. (10). 

In what follows, mathematical terms in this governing EDP are reinterpreted towards epidemic transport 

modeling. 

3.3. Convective transport: ‘streamwise’ motion among categorized people 

From fluid flow viewpoint, v = v (r, t) is the velocity vector field of the hosting medium as mathematically 

described through Eulerian specification. Therefore, the medium must be (or behave as) a fluid; otherwise, 

v = 0 for solid media, i.e., solids do not flow. Inherent to flowing media, convective transport is a macro-scale 

phenomenon as opposed to diffusive counterpart, which is micro-scale in nature and may occur in any 

medium, whether fluid or solid, as discussed ahead in section 3.4. 
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In Eq. (10), convective contribution v∙∇χi must be reinterpreted in epidemic transport context. While 

paradigm shift from classic transport reasoning is envisaged, fluid dynamics may still serve as insight. At this 

point, two issues are brought to mind, namely: 

 Contribution v∙∇χi should be defined using dimensionless generalized coordinates, and 

 Velocity v should refer to streamwise macro-scale motion of bulk hosting medium, opposed to 

random micro-scale motion of its constituent particles (leading to diffusion). 

As proposed in section 3.1, dimensionless generalized coordinates may refer to age, BMI prime or any COVID-

19 comorbidity in a suitable dimensionless scale. In other words, dimensionless generalized coordinates can 

categorize people, whether or not infected. As Eq. (9) evokes, components of velocity vector v can be 

themselves functions of dimensionless generalized coordinates (e.g., categorized people) and time, e.g., vx = 

vx (r, t). In the epidemic transport model, convective contribution v∙∇χi should therefore refer to infectious 

disease spreading due to streamwise (i.e. organized) movement of categorized people as directed by 

contamination velocity vector v. 

A mathematical problem arises: how can contamination velocity vector v be modeled? Similar to its 

successful motivating role in electromagnetism, let fluid dynamics be inspiration again and this is where 

conceptual horizons become widely open. Not only fluid dynamics is a vast scientific branch itself but synergy 

with social sciences is envisioned to support proper choice or adaptation of flow rheology. In other words, 

contamination velocity v should be modeled in view of either cultural background or habits of categorized 

people. For details and prospective insights on convective transport and fluid flow, the reader may refer to 

(Kaviany, 1995; Kays et al., 2005; White, 2006; Nield and Bejan, 2017). 

3.4. Diffusive transport: random motion among categorized people 

If convection is inherent to bulk motion of a flowing medium in macro-scale perception, diffusion refers to 

chaotic motion of its constituent particles at micro-scale level. Specifically, convective transport is 

streamwise directed while diffusive transport is utterly driven by concentration gradients. As a result, 

diffusion takes place regardless of any externally forced motion of the hosting medium. By putting it another 

way, diffusive and convective transport mechanisms are independent from each other to the point that they 

are indeed modeled as distinct terms in Eq. (10). 

Diffusion spreads out the transported quantity from where it is highly concentrated towards lower 

concentration regions, i.e. opposed to the concentration gradient vector. This phenomenological description 

of diffusive transport aligns with Fick’s law, but diffusion can be equally established in terms of ‘random 

walks’ of spreading particles, also referred to as Brownian motion. It is here interesting to realize that 

historical roots of diffusion are linked to life sciences: Adolf Fick (1829-1901) was a German physician and 

physiologist while Robert Brown (1773-1858) was a Scottish botanist and paleobotanist. 

Fick’s law of diffusion introduces a fundamental transport parameter, namely species diffusivity or diffusion 

coefficient. Prescribed pairwise with double indexes, Di,m indicates how fast a given species ‘i’ diffuses 

through a hosting medium ‘m’. If the latter is spatially homogeneous (i.e. uniform), species diffusivity is a 

scalar property; otherwise, it becomes extended towards a tensor whose rank (order) depends on the 

number of diffusion directions invoked in the transport model. As Table 2 shows (Hines and Maddox, 1985; 
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Cussler, 2009), uppermost diffusivities are observed in gases with orders of magnitude higher than values in 

liquids; the latter, in turn, being orders of magnitude higher than diffusivities in solids. 

 

Table 2: Typical orders of magnitude of species diffusivities Di,m in gases, liquids, and solids 

Diffusivity Di,m (i = species, m = medium) Typical order of magnitude (SI units) 

i = gas  ,  m = gas ~ 105 m2/s 

i = liquid  ,  m = liquid ~ 109 m2/s 

i = gas  ,  m = solid ~ 1010  -  1013 m2/s 

i = solid  ,  m = solid ~ 1019  -  1034 m2/s 

 

In the epidemic transport model, diffusive contribution ∇∙(Di,m∇χi) should thus refer to infectious disease 

spreading due to random (i.e. disorganized) motion of categorized people as dictated by species diffusivity 

Di,m depending on hosting medium (modeled as a continuum of categorized people). Hence, infectious 

disease transport via diffusion results from casual interactions among categorized people. For details and 

possibly insights, the reader may refer to specialized textbooks (Skelland, 1974; Crank, 1975). 

3.5. Source and sink terms: contamination/reinfection and recovery/death rates 

Besides convective and diffusive contributions as previously discussed, the epidemic transport model should 

equally consider the influence of either source or sink terms. Within the framework of Eq. (11), generation 

term Si,gen can be associated to contamination and/or reinfection rates whereas consumption term Si,cons 

should refer to recovery and/or death rates. Those terms can be functions of not only time and/or 

dimensionless generalized coordinates but also of infected fraction χi itself. 

3.6. Initial and boundary conditions: known or estimated values 

Initial and boundary conditions are required to solve Eq. (10). Initial conditions refer to a priori known or 

estimated infected fraction distribution if χi,0 = χi(r,0) in the solution domain at some reference date, which 

is then identified as initial instant t = 0. 

As far as boundary conditions are concerned, the imposition of linear mathematical relations at domain 

border δΩ is particularly helpful (Riley et al., 2006; Kreyszig, 2011). In the epidemic transport model, 

boundary conditions can be imposed (over the considered time interval) as follows: 

 Dirichlet condition specifies known or estimated value of infected fraction, i.e. χi,δΩ = χi(δΩ,t); 

 Neumann condition specifies known or estimated value of normal derivative of infected fraction, i.e. 

(∂χi/∂n)δΩ = (n∙∇χi)δΩ = f(δΩ,t); 
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 Robin condition specifies a weighted average (i.e. linear combination) of known or estimated values 

of infected fraction and its normal derivative. 

Somehow resembling the latest boundary condition, Cauchy condition separately specifies function as well 

as its normal derivative at solution domain border. Last but not least, in transport phenomena involving fluid 

flow, Danckwerts condition can be alternatively imposed (Danckwerts, 1953). 

 

4. Results and discussion 

4.1. Preliminary dynamic 2-D epidemic transport model: COVID-19 pandemic 

As any model in mathematical epidemiology, the epidemic transport model put forward in the present work 

is intended to be applied to infectious disease spreading in general. Due to its disquieting pandemic aspect, 

a pilot application was attempted to COVID-19. Prospective COVID-19 spreading from an initial scenario 

related to total infections in Florida (USA) on July 20th 2020, which refers to first-wave infection peak 

(Bevand, 2020; Florida Department of Health, 2020), was taken as case study. COVID-19 infection evolution 

was numerically simulated by relying on the envisaged dynamic 2-D epidemic transport model, i.e., COVID-

19 spreading dynamics was virtualized by means of Eq. (10) as governing PDE adapted to case study 

assumptions. 

4.2. Statistical data to fine-tune epidemic transport model parameters 

While the proposed epidemic transport model conceptually relies on phenomenological governing 

equations, the latter invoke parameters whose values are prone to be statistically determined. As claimed in 

(Saguy, 2016), a modeling paradigm shift is expected in which experimental data will support deterministic 

equations more willingly than observation-based models whose application scope tends to be more limited 

when compared to physics-based counterparts (de Souza-Santos, 2010). 

In mathematical epidemiology, such a mechanistic-statistical model combination turns out to be manifest (if 

not necessary) as ethnical, socio-cultural, economic and even political issues become influential. Human 

mobility and control measures (Kraemer et al., 2020) along with geographic heterogeneity and its resulting 

spatial dynamics (Medlock, 2004) are among ascendant aspects in epidemiological systems. As human 

ontology may affect free parameters invoked in Eq. (11), some (interdisciplinary) modeling challenges arise. 

As cited in section 1, the model framework here proposed is a surrogate mathematical pathway adapting 

transport phenomena concepts and equations towards epidemiology. To the best of authors’ knowledge, the 

present work innovatively employs dimensionless generalized coordinates to categorize people in the 

governing transport-like PDE, whose parameters may be inferred with (say) synergic help from either Health 

or Social Sciences. 

Nevertheless, as far as COVID-19 pandemic is concerned, statistical data characterizing infected people are 

more common in terms of hospital mortality than with respect to disease spreading dynamics. In (Baqui et 

al., 2020), a thorough cross-sectional observational study assessed COVID-19 mortality in Brazil according 

to patients’ geographic region, ethnicity, comorbidities, and symptoms. In (Docherty et al., 2021), a recent 
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multicenter observational cohort study was carried out to characterize COVID-19 first-wave mortality in the 

UK. Yet, such dataset can be helpful to infer source and sink terms (Si,gen and Si,cons) in Eq. (11). 

In the proposed epidemic transport model, diffusivity Di,m accounts for disorganized (i.e., random) infection 

among categorized people. This is a surrogate interpretation for such transport parameter, whose value is a 

priori unknown. While infection-recovery (i.e. source-sink) balance can be assumed for simplicity purposes 

(as discussed next), infected people can still move around casually. Hence, a tentative Di,m value should 

measure how fast COVID-19 randomly spreads (i.e., diffuses) among people. 

Bearing in mind COVID-19 pathogenicity (Hamid et al., 2020), Di,m can be preliminary estimated in view of 

SARS-CoV-2 incubation and recovery time, which statistically leads to two weeks on average per single 

person (WHO, 2020c). As diffusivity dimensions simplify to [time]1 in the proposed epidemic transport 

model, the primary case study in the present work then assumes (per thousand of inhabitants): 

𝐷𝑖,𝑚 =
1

14 days
×

1

1000
     →      𝐷𝑖,𝑚 ≅ 7.14 × 105 day−1      (13) 

In line with time units in Eq. (13), advancing time step was set as ∆t = 1 day in simulations. 

4.3. Independent and dependent variables 

Besides time t, independent variables comprised dimensionless generalized coordinates x and y respectively 

associated to inhabitants’ age as normalized to life expectancy in Florida and BMI prime. Referring to 

dependent variables in Eq. (12), infected fraction χi = χi (x, y, t) is expressed as total COVID-19 infections per 

thousand inhabitants for numerical convenience. 

A typical solution domain might contain inhabitants whose ages range from 0 to 100 years and whose BMI 

range from 10 to 50 kg/m2. By rounding off life expectancy in Florida as ~80 years (Florida Department of 

Health, 2019) while taking maximum optimal BMI as 25 kg/m2 (Gadzik, 2006), solution domain resulted as 

0 < x < 1.25 and 0.4 < y < 2.0 in terms of dimensionless generalized coordinates. Border values (x = 0, x = 

1.25, y = 0.4, y = 2.0) were excluded from the solution domain as boundary conditions are imposed there. 

For numerical and data-related purposes, each dimensionless generalized coordinate x and y was discretized 

into 22 grid points (= 21 subdivisions). 

4.4. COVID-19: initial infection scenario 

In regard to initial condition χi,0 = χi (x, y,0), input data referred to actual distribution of infected people per 

thousand inhabitants for different ages, in Florida on July 20th, 2020 (here taken as t = 0), as shown in Figure 

1 in dimensionless values. As far as infection distribution in terms of BMI prime is concerned, literature lacks 

extant data to the best of our knowledge (this issue is resumed in section 4.6). In order to overcome this 

drawback, a function f = f (x, y) correlating and distributing age-stratified real data x with respect to 

dimensionless BMI prime y was envisaged as follows: 

𝑓(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑦 − 0.4)𝐴(𝑥)
∆𝑦

𝑁−1
         (14) 

where A(x) is the number of infected people per age subdivision, as given in Figure 1, while Δy/(N  1) scales 

such value to each y-domain subdivision. 
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Figure 1: Data related to COVID-19 infected people per 1000 inhabitants in Florida on July 20th 2020, as 

distributed in terms of dimensionless age (= actual age / life expectancy) 

 

Although the proposed distribution regarding BMI prime (y coordinate) is an estimate, for checking 

purposes real data of total infection according to age (x coordinate) can be can retrieved by integrating 

function f(x,y) with respect to y for each x subdivision. Figure 2 depicts the initial condition as adapted to the 

dimensionless domain discretization. 

 

Figure 2: Initial condition χi,0 = χi (x, y,0): estimated fraction of COVID-19 infected people per 1000 

inhabitants in Florida on July 20th, 2020, for dimensionless age and BMI prime 
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4.5. COVID-19 spreading under lockdown: ‘perfect isolation’ and ‘healthy perimeter’ 

As pilot dynamic 2-D case study, COVID-19 spreading was numerically simulated for rigorous lockdown. This 

might be considered as a reference scenario where both traveling and ordered displacements are the lowest 

possible so that streamwise infection among categorized people is disregarded. Mathematically, convective 

contribution is negligible in comparison to diffusive counterpart, i.e., v∙∇χi << ∇∙(Di,m∇χi). Furthermore, let 

contamination-reinfection rates be roughly counterbalanced by recovery-death rates (in the delineated 

region). In such model simplification, source and sink terms are in dynamic equilibrium, i.e., Si,gen ≈ Si,cons, 

which dismisses additional input data. 

By further assuming homogeneous (uniform) hosting medium, Eq. (11) simplifies to: 

∂χ𝑖

∂𝑡
= 𝐷𝑖,𝑚 (

𝜕2χ𝑖

∂𝑥2 +
𝜕2χ𝑖

∂𝑦2 )          (15) 

so that diffusivity Di,m is the only model parameter. While Eq. (15) is mathematically similar (if not 

equivalent) to governing PDEs in reaction-diffusion epidemiological models (Medlock, 2004; Ducrot and 

Magal, 2009; Sabel et al., 2009; Belik et al., 2011), it is worth stressing that independent variable x and y now 

refer to dimensionless generalized coordinates rather than being limited to spatial coordinates. 

With respect to boundary conditions, the same type was numerically implemented at all borders for 

simplicity. Specifically in this work, either Dirichlet or Neumann boundary condition was tentatively imposed 

at a time so that two sets of numerical simulations were performed, one for each type. As those two boundary 

conditions have been long invoked in transport phenomena (Morse and Feshbach, 1953), they are prone to 

render familiar links in view of the introductory epidemiological interpretation herein proposed. 

In the first set of numerical simulations, null Neumann condition was imposed at all boundaries (for t > 0), 

namely: 

∂χ𝑖

∂𝑥
|

𝑦=0.4
=

∂χ𝑖

∂𝑥
|

𝑦=2.0
= 0       and       

∂χ𝑖

∂𝑦
|

𝑥=0
=

∂χ𝑖

∂𝑦
|

𝑥=1.25
= 0     (16) 

As this is mathematically equivalent to impermeable or adiabatic walls as far as mass and heat transfer are 

respectively concerned, Eq. (16) could be regarded as ‘perfect isolation’, meaning that disease spreading is 

confined within domain borders but infection itself is not effectively mitigated therein. This has been indeed 

invoked in epidemiological studies (Aniţa and Aniţa, 2005; Dai and Liu, 2020) to model effective physical 

barrier as ‘cordon sanitaire’ such as the one attempted in Wuhan, China (WHO, 2020c). 

In the context of the generalized coordinates herein envisaged, null Neumann condition would impose that 

infectious disease would not spread across certain age or BMI groups. Categorized people at solution domain 

edges would be effectively isolated (e.g. through social distancing) whereas economically active people at 

domain center would continue transmitting and being infected among themselves. This approach could 

model epidemiological scenarios where infectious disease remains restricted within specific groups as in 

(Monod et al., 2021). 

The sequence in Figure 3 shows the potential dynamic evolution of infected fraction χi if isolation condition 

is assumed. It is noted that χi slowly equalizes among people of different ages and BMI prime, taking more 
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than 6000 days (~ 16.5 years) to asymptotically reach uniform (endemic) infection, i.e. all categorized 

people become homogeneously infected. Though exaggerated, this outcome should not be surprising in view 

of a hypothetical scenario where no mitigation health measures are effectively undertaken other than simply 

balancing infection-recovery rates. 

In the second set of simulations, null Dirichlet condition was imposed at all boundaries (for t > 0), meaning 

that infection beyond domain borders is negligible, namely: 

χ𝑖(𝑥, 𝑦 = 0.4, 𝑡) = χ𝑖(𝑥, 𝑦 = 2.0, 𝑡) = 0     and     χ𝑖(𝑥 = 0, 𝑦, 𝑡) = χ𝑖(𝑥 = 1.25, 𝑦, 𝑡) = 0 (17) 

Though less common, Dirichlet boundary condition can also be invoked in epidemiological models, in cases 

when the model framework establishes disease-free zones (Chekroun and Kuniya, 2020). 

While it should be realized that borders are actually open, Eq. (17) could be possibly interpreted as creating 

(say) a ‘healthy perimeter’ (i.e. zero-infection perimeter) around categorized people. This approach could 

model a scenario in which specific age and BMI groups (i.e. priority groups) are under vaccination (thus 

effectively in zero-infection perimeter) whereas several economically active people are not yet, which is an 

actual scenario currently prevailing in many countries. 

The sequence in Figure 4 shows the prospective dynamic evolution of infected fraction χi if ‘healthy 

perimeter’ condition is assumed. It is noted that while χi slowly equalizes among different people, it is also 

mitigated towards infection-free situation, which can indeed be evoked after 2000 days (~ 5.5 years). Again, 

this numerical simulation refers to a hypothetical scenario that assumes a dynamic balance between 

contamination-reinfection and recovery-death rates. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 
(f) 

 

(g) 

 

(h) 

Figure 3: Prospective dynamic evolution of COVID-19 infected fraction χi = χi(x,y,t) as numerically 

simulated by imposing null Neumann condition at all domain boundaries (‘perfect isolation’) after: (a) 10 

days, (b) 50 days, (c) 150 days, (d) 300 days, (e) 750 days, (f) 1500 days, (g) 3000 days, (h) 6000 days 

 

(a) 

 

(b) 

 

(c) 

 

(d) 



 

International Journal of Advanced Thermofluid Research. 2021. 7(1): 3-25. 
 

Mathematical epidemiology through transport phenomena viewpoint                                                            Valentim et al. 19 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 4: Prospective dynamic evolution of COVID-19 infected fraction χi = χi(x,y,t) as numerically simulated 

by imposing null Dirichlet condition at all domain boundaries (‘healthy perimeter’) after: (a) 5 days, (b) 10 

days, (c) 25 days, (d) 50 days, (e) 100 days, (f) 500 days, (g) 1000 days, (h) 2000 days 

4.6. Paradigm shift in epidemiological dataset 

By combining transport phenomena ideas and (dimensionless) generalized coordinates to categorize people, 

the proposed epidemic transport model is a pioneering framework (to the best of authors’ knowledge). 

Epidemiological dataset for validation purposes should not only describe infectious disease dynamics (not 

limited to mortality rates) but also characterize its spreading as separated in terms of people’s age, 

comorbidities, activity level, etc. 

For numerical simulations in previous section, data from (Florida Department of Health, 2019) could provide 

an initial scenario as infected people were divided into age groups to some extent. While those data cannot 

be strictly used for validation, prospective COVID-19 spreading dynamics was successfully simulated with 

no loss of generality by relying on an innovative (and hopefully promising) epidemiological model 

framework. 

By providing preliminary applications of concepts here discussed, aforesaid numerically simulated scenarios 

can be stepping-stones for future studies using more complete versions of the epidemic transport equation 

as epidemiological data become categorized. Unfortunately, COVID-19 pandemic still prevails and 

categorized dataset might indeed become available for future validation. 
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4.6. Future developments 

While the present work introduces a preliminary epidemic transport model, prospective developments can 

definitely be envisaged. The following list of theoretical points to ponder is evidently far from exhaustive. 

 Extension to multidimensional models: many dimensionless generalized coordinates could in 

principle be invoked in multidimensional (n-D) modeling to include other comorbidities or even 

cardinal directions themselves. 

 Inhomogeneous hosting media: diffusivity can be extended to non-uniform media (i.e. Dxx ≠ Dyy). It 

can equally depend on generalized coordinates (i.e. spreading among youth ≠ spreading among 

elderly) and/or time (i.e. spreading reduces as population becomes more conscious about social 

distancing). 

 Mixed boundary conditions: different conditions can in principle be imposed at domain boundaries 

as exploratory studies of dissimilar infection scenarios. 

 Unbalanced source-sink terms: different outcomes are expected whenever contamination-

reinfection and recovery-death rates are not in equilibrium. 

 Hosting media rheology: by reminding that viscosity refers to friction forces in fluid flow, what should 

be its role in an epidemic transport model? From rheological viewpoint, could Newtonian or non-

Newtonian fluid flows be associated to different streamwise infection mechanisms? For instance, 

could latency period be somehow modeled as Bingham plastic? 

 Porous hosting media: as porosity is a transport property measuring void fraction (clear spaces), 

could it be a measure of crowding trends? Furthermore, what should be the role of permeability in 

view of preferential pathways and connectivity among categorized people? 

 Multicomponent-multiphase hosting media: could this idea be adapted in order to model 

asymptomatic people as mixed up with symptomatic and not-infected ones? 

 Rarefied hosting media: if continuum hypothesis no longer holds, could Knudsen diffusion be invoked 

or adapted to disease spreading? To what extent could this limiting model refer to classic 

compartmental epidemic models (e.g., SIR, SIS, SEIR, SEIS, SEIRS)? 

 

5. Conclusion 

Mathematical epidemiology is a multifaceted science branch whose comprehensiveness is prone to rely on 

synergy among not only exact and life sciences (as its name suggests) but also social sciences (e.g. human 

ontology). This is particularly true in view of the epidemic transport model proposed in the present work, in 

which diffusive (i.e. random infection) and convective (i.e. streamwise infection) contributions are both 

modeled in terms of categorized people, besides the usual time-dependence. 
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Momentum, mass and heat transfer have underlying (and ubiquitous) ideas that can be shared and exploited 

towards mathematical epidemiology. This is because infected people can be equally analyzed and modeled 

with the help of basic conservation principles together with constitutive equations. By profiting from well-

established governing equations typical to transport phenomena, challenges as well as opportunities become 

broadly open to research on infectious disease spreading. The preliminary epidemic transport model put 

forward in this work can be a stepping-stone. 
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	1. Introduction
	Caused by new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-19 was first identified in December 2019 as patients were diagnosed with unknown-origin pneumonia in Wuhan, China (Wiersinga et al., 2020). By generating a range of dise...
	Bearing in mind likely restricted access to health services, social distancing has been claimed as essential public health response to COVID-19 pandemic (Shen et al., 2020). As means to relieve pressure on health systems, social distancing aims at dec...
	In view of that, relevant points in epidemiological models for pandemic diseases such as COVID-19 should include (but are definitely not restricted to) human ontology and/or comorbidities. A comprehensive mathematical framework should contemplate eith...
	Ultimately inspired by the long-standing work of (Kermack & McKendrick, 1927), compartmental models for epidemic spreading have recurrently relied on systems of ordinary differential equations (Bailey, 1975; Hethcote, 1989; Brauer & Castillo-Chávez, 2...
	While COVID-19 spread from contact surfaces (e.g. touching surfaces with viruses) is indeed a possible transmission mode, epidemiological studies have pointed to aerosols (i.e. small droplets suspended in the air) as major infection route. Hence, drop...
	Models inspired by reaction-diffusion processes have been proposed in mathematical epidemiology as well (Medlock, 2004; Ducrot and Magal, 2009; Belik et al., 2011). In those dynamic models, quantities depend not only on time but also on further indepe...
	As exemplified in (David & Rabi, 2020), observable phenomena can be modeled by following alternative pathways. With respect to COVID-19 dynamics, time branching process may model outbreak early days (Levesque et al., 2021) whereas the reproductive num...
	As discussed in section 3.1, generalized coordinates are here envisaged to categorize people in terms of age, comorbidities, or social activity level. While age-structured transport equations have been used to model spatial dynamic of vole populations...
	As far as population biology modeling is concerned, COVID-19 pandemic has received unprecedented attention (Rosenberg, 2021). Motivated by scientific ‘what-if’ impetus, the present work envisions a surrogate model pathway for mathematical epidemiology...
	2. Transport equation of conserved quantities
	Transport phenomena are triggered and upheld by concentration differences, where ‘concentration’ refers to some (say) ‘abundance degree’ of physical quantities under analysis (e.g. momentum, energy, chemical species, or electric charge). Those observa...
	In transport phenomena, conservation balances may comprise diffusive contribution due to interactions between the transported quantity and the hosting medium as well as convective contribution from external actions on the hosting medium itself. Additi...
	Often linked to scalar field transport in an incompressible flow, the transport equation describes how a physical quantity is transferred across its hosting medium. It can be seen as the generalization of continuity equation (Rodi, 2017) as this latte...
	The continuity principle stated that the variation rate of a scalar quantity in a differential control volume must account for flow as well as diffusion of such scalar, both into and out of this volume, along with generation and/or consumption rates t...
	,𝜕φ-𝜕𝑡.+∇∙𝐣=,𝑆-φ.           (1)
	where φ is the scalar field under analysis, j is φ-flux vector through volume boundaries (i.e., control surface), and Sφ comprises φ source/sink in the control volume. Mathematically, ∂φ/∂t gives the local variation rate of scalar quantity φ, ∇∙j is t...
	The transport equation, Eq. (1), can be further detailed by either developing or adapting its terms. Nonetheless, prior to discussing the prospective use of the transport equation in mathematical epidemiology, its underlying concepts are concisely dis...
	2.1. Extensive and intensive quantities
	Observable quantities can be categorized as either extensive or intensive. Values of the former depend on system extension such as area, volume, amount of matter, mass, and force. In opposition, values of intensive quantities might vary from point to ...
	Extensive and intensive quantities can be interconnected. For example, suitably chosen for this work, let dNi be the amount of some chemical species (here identified by subscript i) within a differential volume dV about a given point (i.e., spatial po...
	,𝐶-𝑖.=,d,𝑁-𝑖.-d𝑉.           (2)
	which is an intensive quantity. Conversely, if species concentration Ci is point-to-point known in a given system volume V, its total amount Ni can be retrieved as:
	,𝑁-𝑖.=,d,𝑁-𝑖..=,,𝐶-𝑖. d𝑉.          (3)
	with the integration being performed over the whole system.
	Two particularities are of interest at this point. Firstly, in 2-D domains those previous mathematical relations spatially reduce to:
	,𝐶-𝑖.=,d,𝑁-𝑖.-d𝐴.     ↔    ,𝑁-𝑖.=,d,𝑁-𝑖..=,,𝐶-𝑖. d𝐴.        (4)
	where species concentration Ci is integrated on area-basis so as to provide the total amount Ni. Further simplification to 1-D (i.e. linear) domains is here omitted for brevity. Secondly, let dN be the total amount of all species within dV (or dA) so ...
	d𝑁=,𝑖-d,𝑁-𝑖..     and     𝑁=,d𝑁.        (5)
	where N is the total amount of all species within the system. Accordingly, it is sometimes convenient to mathematically describe species concentration in dimensionless form as:
	,χ-𝑖.=,d,𝑁-𝑖.-d𝑁.=,d,𝑁-𝑖./d𝑉-d𝑁/d𝑉.=,,𝐶-𝑖.-𝐶.          (6)
	where χi is referred to as species fraction (or amount fraction), which is an intensive quantity, whereas C is whole system concentration with all species included.
	While some conservation laws (balance equations) are expressed in terms of variation rates of extensive quantities, detailed knowledge of intensive quantities is essential to retrieve their extensive counterparts. Moreover, it is precisely point-to-po...
	2.2. Continuum hypothesis
	Equations (2)-(6) implicitly invoke the continuum hypothesis, which treats any medium as having no voids, i.e., a continuum solution domain. It prevails whenever a representative number of constituent elements populate any differential volume dV or ar...
	Under continuum hypothesis, any intensive quantity can be modeled as steadily varying in space and time (Barton, 1992; Ørstavik et al., 2000). In view of that, species fraction χi can be mathematically represented by a continuous function of position ...
	,χ-𝑖.,𝐫,𝑡.=,χ-𝑖.,𝑥,𝑦,𝑧,𝑡. (7)
	where 𝐫=𝑥𝐢+𝑦𝐣+𝑧𝐤, being i, j and k orthogonal unit vectors. In 2-D model frameworks, one coordinate (say z) is declined while in 1-D model only one coordinate (e.g., x) remains.
	2.3. Lagrangian and Eulerian specifications
	Mathematical modeling of transport phenomena and/or fluid flow might follow distinct descriptions (Leal, 2007; Slattery at al., 2007). If individual elements (e.g., suspension particles) can be easily and unceasingly identified in the flow field, Lagr...
	Other than chasing constituent elements, specific positions (e.g., control points) in the solution domain can be observed over time as system dynamically evolves. This is the very spirit of Eulerian method, which aims at describing systems in terms of...
	In a ‘theatrical’ metaphoric comparison, Lagrangian method is mostly concerned with the ‘cast’ or specific ‘actors’ whereas Eulerian method pays attention to the ‘stage’ or specific places therein. However, and almost paradoxically, governing differen...
	Abovementioned mathematical artifice leads to the material derivative operator D/Dt, also known as total or substantial derivative. Accordingly, if χi = χi (r, t) is species fraction at position r and time t, its material derivative is defined as:
	,D,χ-𝑖.-D𝑡.=,∂,χ-𝑖.-∂𝑡.+𝐯∙∇,χ-𝑖.           (8)
	where v is suitably identified as flow velocity and ∇ is del (or nabla) operator here applied to fraction scalar field χi as gradient, i.e., ∇χi = grad χi. In Cartesian coordinates, those two vector entities become expressed as:
	𝐯=,𝑣-𝑥.𝐢+,𝑣-𝑦.𝐣+,𝑣-𝑧.𝐤     and     ∇=,∂-∂𝑥.𝐢+,∂-∂𝑦.𝐣+,∂-∂𝑧.𝐤       (9)
	This proper velocity identification holds for dt → 0 as Lagrangian and Eulerian descriptions coincide or, by putting it another way, as particle trajectories (i.e. individual constituents’ behavior) instantaneously coincide with flow streamlines (i.e....
	2.4. Transport equation for intensive quantities
	In a flowing hosting medium, governing differential equations for intensive quantities transported can be derived from conservation laws by following Eulerian method. In terms of material derivative, Eq. (8), the resulting transport equation can be ad...
	,∂,χ-𝑖.-∂𝑡.+𝐯∙∇,χ-𝑖.=∇∙,,𝐷-𝑖,𝑚.∇,χ-𝑖..+,𝑆-𝑖.         (10)
	where Di, m is the diffusivity of species ‘i’ in hosting medium ‘m’ (where it diffuses) and Si refers to either source or sink rates. Table 1 summarizes possible interpretations and features of mathematical terms in Eq. (10). By assuming uniform diffu...
	,∂,χ-𝑖.-∂𝑡.+,𝑣-𝑥.,∂,χ-𝑖.-∂𝑥.+,𝑣-𝑦.,∂,χ-𝑖.-∂𝑦.=,𝐷-𝑖,𝑚.,,,𝜕-2.,χ-𝑖.-∂,𝑥-2..+,,𝜕-2.,χ-𝑖.-∂,𝑦-2...+,𝑆-𝑖,gen.−,𝑆-𝑖,cons.      (11)
	Table 1: Interpretation of terms in the transport equation as adapted to species fraction
	3. Transport equation towards mathematical epidemiology
	In order to apply Eq. (10) to mathematical epidemiology, variables and parameters in this governing EDP should be reinterpreted under disease spreading viewpoint. In particular, this work puts forward a paradigm shift in terms of the prospective use o...
	3.1. Independent variables: time and generalized coordinates
	When modeling infectious disease spreading, time t should render no misperception as independent variable while Cartesian coordinates could supposedly refer to cardinal directions in 2-D domains, e.g. x for west-east direction and y for south-north di...
	By transcending their systematic geometric role, let independent variables x and y be assigned to (say) generalized coordinates, which must be suitably normalized for dimensional consistency purposes. By rendering dimensionless coordinates, this norma...
	 Streamwise velocity v can be alternatively interpreted as contamination velocity, whose multidimensional components are defined in terms of time and dimensionless generalized coordinates, thus with the same dimensions, namely [time](1 (section 3.3);
	 Diffusivity Di,m become dimensionally consistent for any ‘multidimensional generalized’ domain as its dimensions simplify to [time](1, regardless of the generalized coordinates system (section 3.4).
	In a dynamic 1-D model, for instance, generalized coordinate x could be associated to inhabitants’ age as measured in some dimensionless continuous scale, e.g. normalized by life expectancy. In 2-D modeling, generalized coordinate y could be additiona...
	3.2. Dependent variables: infected people and infected fraction
	Bearing in mind Eqs. (2)-(6), the epidemic transport model identifies Ni as the number of infected people among N inhabitants in a particular country, state, region, county or town. In this descending geographic order, can the analyzed system become a...
	In the epidemic transport model, Ni and χi arise as dependent variables interrelated via Eq. (6). The former is an extensive variable depending only on time, i.e. Ni = Ni(t), while the latter is an intensive dimensionless variable to be modeled as a c...
	At this point, the so-called ‘diluted mixture’ rationale is invoked so as to model infected people likewise diluted species transport in reactive medium (i.e. including generation and/or consumption rates). Consequently, N = constant is assumed, which...
	,𝑁-𝑖.(𝑡)=𝑁,,χ-𝑖.(𝐫,𝑡) d𝐫. (12)
	where the integration is performed over dimensionless generalized coordinates r. It is worth remembering that infected-people fraction χi is the transported intensive quantity that comes from the solution of Eq. (10). In what follows, mathematical ter...
	3.3. Convective transport: ‘streamwise’ motion among categorized people
	From fluid flow viewpoint, v = v (r, t) is the velocity vector field of the hosting medium as mathematically described through Eulerian specification. Therefore, the medium must be (or behave as) a fluid; otherwise, v = 0 for solid media, i.e., solids...
	In Eq. (10), convective contribution v∙∇χi must be reinterpreted in epidemic transport context. While paradigm shift from classic transport reasoning is envisaged, fluid dynamics may still serve as insight. At this point, two issues are brought to min...
	 Contribution v∙∇χi should be defined using dimensionless generalized coordinates, and
	 Velocity v should refer to streamwise macro-scale motion of bulk hosting medium, opposed to random micro-scale motion of its constituent particles (leading to diffusion).
	As proposed in section 3.1, dimensionless generalized coordinates may refer to age, BMI prime or any COVID-19 comorbidity in a suitable dimensionless scale. In other words, dimensionless generalized coordinates can categorize people, whether or not in...
	A mathematical problem arises: how can contamination velocity vector v be modeled? Similar to its successful motivating role in electromagnetism, let fluid dynamics be inspiration again and this is where conceptual horizons become widely open. Not onl...
	3.4. Diffusive transport: random motion among categorized people
	If convection is inherent to bulk motion of a flowing medium in macro-scale perception, diffusion refers to chaotic motion of its constituent particles at micro-scale level. Specifically, convective transport is streamwise directed while diffusive tra...
	Diffusion spreads out the transported quantity from where it is highly concentrated towards lower concentration regions, i.e. opposed to the concentration gradient vector. This phenomenological description of diffusive transport aligns with Fick’s law...
	Fick’s law of diffusion introduces a fundamental transport parameter, namely species diffusivity or diffusion coefficient. Prescribed pairwise with double indexes, Di,m indicates how fast a given species ‘i’ diffuses through a hosting medium ‘m’. If t...
	Table 2: Typical orders of magnitude of species diffusivities Di,m in gases, liquids, and solids
	In the epidemic transport model, diffusive contribution ∇∙(Di,m∇χi) should thus refer to infectious disease spreading due to random (i.e. disorganized) motion of categorized people as dictated by species diffusivity Di,m depending on hosting medium (m...
	3.5. Source and sink terms: contamination/reinfection and recovery/death rates
	Besides convective and diffusive contributions as previously discussed, the epidemic transport model should equally consider the influence of either source or sink terms. Within the framework of Eq. (11), generation term Si,gen can be associated to co...
	3.6. Initial and boundary conditions: known or estimated values
	Initial and boundary conditions are required to solve Eq. (10). Initial conditions refer to a priori known or estimated infected fraction distribution if χi,0 = χi(r,0) in the solution domain at some reference date, which is then identified as initial...
	As far as boundary conditions are concerned, the imposition of linear mathematical relations at domain border δΩ is particularly helpful (Riley et al., 2006; Kreyszig, 2011). In the epidemic transport model, boundary conditions can be imposed (over th...
	 Dirichlet condition specifies known or estimated value of infected fraction, i.e. χi,δΩ = χi(δΩ,t);
	 Neumann condition specifies known or estimated value of normal derivative of infected fraction, i.e. (∂χi/∂n)δΩ = (n∙∇χi)δΩ = f(δΩ,t);
	 Robin condition specifies a weighted average (i.e. linear combination) of known or estimated values of infected fraction and its normal derivative.
	Somehow resembling the latest boundary condition, Cauchy condition separately specifies function as well as its normal derivative at solution domain border. Last but not least, in transport phenomena involving fluid flow, Danckwerts condition can be a...
	4. Results and discussion
	4.1. Preliminary dynamic 2-D epidemic transport model: COVID-19 pandemic
	As any model in mathematical epidemiology, the epidemic transport model put forward in the present work is intended to be applied to infectious disease spreading in general. Due to its disquieting pandemic aspect, a pilot application was attempted to ...
	4.2. Statistical data to fine-tune epidemic transport model parameters
	While the proposed epidemic transport model conceptually relies on phenomenological governing equations, the latter invoke parameters whose values are prone to be statistically determined. As claimed in (Saguy, 2016), a modeling paradigm shift is expe...
	In mathematical epidemiology, such a mechanistic-statistical model combination turns out to be manifest (if not necessary) as ethnical, socio-cultural, economic and even political issues become influential. Human mobility and control measures (Kraemer...
	As cited in section 1, the model framework here proposed is a surrogate mathematical pathway adapting transport phenomena concepts and equations towards epidemiology. To the best of authors’ knowledge, the present work innovatively employs dimensionle...
	Nevertheless, as far as COVID-19 pandemic is concerned, statistical data characterizing infected people are more common in terms of hospital mortality than with respect to disease spreading dynamics. In (Baqui et al., 2020), a thorough cross-sectional...
	In the proposed epidemic transport model, diffusivity Di,m accounts for disorganized (i.e., random) infection among categorized people. This is a surrogate interpretation for such transport parameter, whose value is a priori unknown. While infection-r...
	Bearing in mind COVID-19 pathogenicity (Hamid et al., 2020), Di,m can be preliminary estimated in view of SARS-CoV-2 incubation and recovery time, which statistically leads to two weeks on average per single person (WHO, 2020c). As diffusivity dimensi...
	,𝐷-𝑖,𝑚.=,1-14 days.×,1-1000.     →     ,𝐷-𝑖,𝑚.≅7.14×,10-(5. ,day-−1.      (13)
	In line with time units in Eq. (13), advancing time step was set as ∆t = 1 day in simulations.
	4.3. Independent and dependent variables
	Besides time t, independent variables comprised dimensionless generalized coordinates x and y respectively associated to inhabitants’ age as normalized to life expectancy in Florida and BMI prime. Referring to dependent variables in Eq. (12), infected...
	A typical solution domain might contain inhabitants whose ages range from 0 to 100 years and whose BMI range from 10 to 50 kg/m2. By rounding off life expectancy in Florida as ~80 years (Florida Department of Health, 2019) while taking maximum optimal...
	4.4. COVID-19: initial infection scenario
	In regard to initial condition χi,0 = χi (x, y,0), input data referred to actual distribution of infected people per thousand inhabitants for different ages, in Florida on July 20th, 2020 (here taken as t = 0), as shown in Figure 1 in dimensionless va...
	𝑓,𝑥,𝑦.=𝑠𝑖𝑛,𝑦−0.4.𝐴,𝑥.,∆𝑦-𝑁−1.         (14)
	where A(x) is the number of infected people per age subdivision, as given in Figure 1, while Δy/(N ( 1) scales such value to each y-domain subdivision.
	Figure 1: Data related to COVID-19 infected people per 1000 inhabitants in Florida on July 20th 2020, as distributed in terms of dimensionless age (= actual age / life expectancy)
	Although the proposed distribution regarding BMI prime (y coordinate) is an estimate, for checking purposes real data of total infection according to age (x coordinate) can be can retrieved by integrating function f(x,y) with respect to y for each x s...
	Figure 2: Initial condition χi,0 = χi (x, y,0): estimated fraction of COVID-19 infected people per 1000 inhabitants in Florida on July 20th, 2020, for dimensionless age and BMI prime
	4.5. COVID-19 spreading under lockdown: ‘perfect isolation’ and ‘healthy perimeter’
	As pilot dynamic 2-D case study, COVID-19 spreading was numerically simulated for rigorous lockdown. This might be considered as a reference scenario where both traveling and ordered displacements are the lowest possible so that streamwise infection a...
	By further assuming homogeneous (uniform) hosting medium, Eq. (11) simplifies to:
	,∂,χ-𝑖.-∂𝑡.=,𝐷-𝑖,𝑚.,,,𝜕-2.,χ-𝑖.-∂,𝑥-2..+,,𝜕-2.,χ-𝑖.-∂,𝑦-2...          (15)
	so that diffusivity Di,m is the only model parameter. While Eq. (15) is mathematically similar (if not equivalent) to governing PDEs in reaction-diffusion epidemiological models (Medlock, 2004; Ducrot and Magal, 2009; Sabel et al., 2009; Belik et al.,...
	With respect to boundary conditions, the same type was numerically implemented at all borders for simplicity. Specifically in this work, either Dirichlet or Neumann boundary condition was tentatively imposed at a time so that two sets of numerical sim...
	In the first set of numerical simulations, null Neumann condition was imposed at all boundaries (for t > 0), namely:
	,,,∂,χ-𝑖.-∂𝑥..-𝑦=0.4.=,,,∂,χ-𝑖.-∂𝑥..-𝑦=2.0.=0       and       ,,,∂,χ-𝑖.-∂𝑦..-𝑥=0.=,,,∂,χ-𝑖.-∂𝑦..-𝑥=1.25.=0     (16)
	As this is mathematically equivalent to impermeable or adiabatic walls as far as mass and heat transfer are respectively concerned, Eq. (16) could be regarded as ‘perfect isolation’, meaning that disease spreading is confined within domain borders but...
	In the context of the generalized coordinates herein envisaged, null Neumann condition would impose that infectious disease would not spread across certain age or BMI groups. Categorized people at solution domain edges would be effectively isolated (e...
	The sequence in Figure 3 shows the potential dynamic evolution of infected fraction χi if isolation condition is assumed. It is noted that χi slowly equalizes among people of different ages and BMI prime, taking more than 6000 days (~ 16.5 years) to a...
	In the second set of simulations, null Dirichlet condition was imposed at all boundaries (for t > 0), meaning that infection beyond domain borders is negligible, namely:
	,χ-𝑖.,𝑥,𝑦=0.4,𝑡.=,χ-𝑖.(𝑥,𝑦=2.0,𝑡)=0     and     ,χ-𝑖.,𝑥=0,𝑦,𝑡.=,χ-𝑖.(𝑥=1.25,𝑦,𝑡)=0 (17)
	Though less common, Dirichlet boundary condition can also be invoked in epidemiological models, in cases when the model framework establishes disease-free zones (Chekroun and Kuniya, 2020).
	While it should be realized that borders are actually open, Eq. (17) could be possibly interpreted as creating (say) a ‘healthy perimeter’ (i.e. zero-infection perimeter) around categorized people. This approach could model a scenario in which specifi...
	The sequence in Figure 4 shows the prospective dynamic evolution of infected fraction χi if ‘healthy perimeter’ condition is assumed. It is noted that while χi slowly equalizes among different people, it is also mitigated towards infection-free situat...
	Figure 3: Prospective dynamic evolution of COVID-19 infected fraction χi = χi(x,y,t) as numerically simulated by imposing null Neumann condition at all domain boundaries (‘perfect isolation’) after: (a) 10 days, (b) 50 days, (c) 150 days, (d) 300 days...
	Figure 4: Prospective dynamic evolution of COVID-19 infected fraction χi = χi(x,y,t) as numerically simulated by imposing null Dirichlet condition at all domain boundaries (‘healthy perimeter’) after: (a) 5 days, (b) 10 days, (c) 25 days, (d) 50 days,...
	4.6. Paradigm shift in epidemiological dataset
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