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Abstract 

Geophysical flow simulation for the prediction of emergency situations such as 
inundation, dam break, oil spills and tsunami is an active field of research. Depth-
averaged form of conservation equations, known as shallow water equations (SWE), are 
the main inputs for such simulations. Recent research has proved that SWEs are 
powerful enough to capture up the most crucial parameters that define those emergency 
situations. In this research the non-linear system of SWEs are solved by using different 
approximate Riemann solvers and listed out their weaknesses. An advanced approach of 
treating source terms in a form of wave which satisfies the well-balancing condition is 
discussed and all the Riemann solvers used are compared with the benchmark test cases 
proposed by National Oceanic and Atmospheric Administration (NOAA) to prove their 
workability. 
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1. Introduction 

Riemann solvers are well applied to hyperbolic conservation equations. The computational domain 

is split up into discrete volumes and each face is considered to be a discontinuity to solve a Riemann 

problem. Roe (1981)’s approach is a simple linearized Riemann solver, which is well applied to the 

field of gas dynamics; although it violates entropy at certain conditions, it can be fixed with various 

entropy fixes (Hudson, 1999). In case of shallow water equations (SWE), a new set of problem on 

well-balancing arises during steady state computation where the source terms are equally higher 

as the convective terms. 

In this research three various Riemann solvers are being discussed and validated against 

benchmark test cases of analytical or experimental to find out the best possible solver at the current 
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stage. At first the standard Roe’s Flux Difference Splitting (FDS) (Roe, 1981), which has its 

application on almost every hyperbolic system of equations, is discussed. Subsequently, LeVeque’s 

f-wave approach (LeVeque, 2004) and an advanced f-wave type Augmented 4 Wave Scheme 

(A4WS) (George and LeVeque, 2006) are discussed. 

2. Shallow Water Equations  

SWEs are depth-averaged form of Navier-Strokes equation, which govern the flow phenomenon of 

long gravity waves; they have good application in geophysical flows such as tsunami waves, dam 

break and inundation of river or sea water. The main assumptions made while deriving the 

equations are: the fluid is considered to be inviscid and the vertical velocity is very less than the 

horizontal velocity (for further details about the derivation refer Dawson and Mirabito (2008)). The 

parameters governing the flow are described in the Fig. 1, where the height of the water column is 

h(x), the bathymetry measured from absolute zero is B(x) and the horizontal velocity is u(x). 

 

Fig. 1. Variables governing the flow. 

 
∂𝑞

∂𝑡
+

∂𝐹(𝑞)

∂𝑥
= 𝑅(𝑥) ( 1 ) 

The vector form of conservative one-dimensional (1D) SWE is given in Eqn. (1), where the 

conservative variables are grouped in a vector 𝑞(𝑥, 𝑡), the flux variables in a vector 𝐹(𝑞) and the 

source terms which give raise to additional momentum are grouped in a vector 𝑅(𝑥, 𝑞), as given by: 

 𝑞(𝑥, 𝑡) = [
ℎ
𝑢ℎ

] , 𝐹(𝑞) = [
𝑢ℎ

ℎ𝑢2 +
1

2
𝑔ℎ2] ,   𝑅(𝑥, 𝑞) = [

0
−𝑔ℎ𝐵′(𝑥) − 𝜏𝑥

] ( 2 ) 
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As we have derived inviscid SWE, the bottom friction term 𝜏𝑥 has to be added with the momentum 

equation through some empirical relations which will be discussed later. SWE can be written in 2D 

as: 

 
∂𝑞

∂𝑡
+

∂(𝐹(𝑞))

∂𝑥
+

∂(𝐺(𝑞))

∂𝑦
= 𝑅(𝑥, 𝑦) ( 3 ) 

where  𝑞(𝑥, 𝑡) = [
ℎ
ℎ𝑢
ℎ𝑣

] , 𝐹(𝑞) = [

ℎ𝑢

ℎ𝑢2 +
1

2
𝑔ℎ2

ℎ𝑢𝑣

] , 𝐺(𝑞) = [

ℎ𝑣
ℎ𝑢𝑣

ℎ𝑣2 +
1

2
𝑔ℎ2

] , 𝑅(𝑥, 𝑞) = [

0
−𝑔ℎ𝐵′(𝑥) − 𝜏𝑥

−𝑔ℎ𝐵′(𝑦) − 𝜏𝑦

] 

3. Riemann Solvers 

A. Roe FDS  

Roe (1981) derived an approach which approximates systems of conservation laws by using a 

piecewise constant approximation.  

I. Without Source Term 
 

Considering the governing equation without the source component results in homogeneous system 

of equations, and discretising with FTCS explicit method gives: 

 (𝑞𝑛+1 − 𝑞𝑛)

Δ𝑡
+

(𝐹
𝑖+

1
2

𝑛 − 𝐹
𝑖−

1
2

𝑛 )

Δ𝑥
= 0 

( 4 ) 

 

The fluxes at the faces are given as 𝐹
𝑖+

1

2

𝑛   and 𝐹
𝑖−

1

2

𝑛 , which are determined as: 

 𝐹
𝑖+

1
2

𝑛 =
1

2
(𝑓𝑖+1

𝑛 + 𝑓𝑖
𝑛) −

1

2
(∑ �̃�𝑘�̃�𝑘�̃�𝑘

𝑚

𝑘=1

) ( 5 ) 

 

For the stencil of grids with its index i+1 as right of the face and i as left of the face. The wave speed 

is taken as Roe speed �̃�𝑘 and the corresponding Eigen vector is �̃�𝑘with its magnitude as �̃�𝑘 

𝜆
~

1 = 𝑢
~

+ 𝑐
~
,  𝜆

~

2 = 𝑢
~

− 𝑐
~
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𝑒
~

1 = [
1

𝑢
~

+ 𝑐
~] , 𝑒

~

2 = [
1

𝑢
~

− 𝑐
~] 

𝛼
~

1 =
1

2
Δℎ +

1

2𝑐
~ (Δ(ℎ𝑢) − 𝑢

~
Δℎ),    𝛼

~

2 =
1

2
Δℎ −

1

2𝑐
~ (Δ(ℎ𝑢) − 𝑢

~
Δℎ) 

where 𝑢
~

 and 𝑐
~

 are Roe averages given as: 

𝑢
~

=
√ℎ𝑟𝑢𝑟 + √ℎ𝑙𝑢𝑙

√ℎ𝑟 + √ℎ𝑙

 and 𝑐
~

= √𝑔
ℎ𝑟 + ℎ𝑙

2
 

II. With Source Term 
Source terms are added through a common operator type splitting scheme called as Strang Splitting 

(Strang, 1968). It involves computations with fractional time step (Δ𝑡/2) and complete time step 

(Δ𝑡) for source terms; the concept is to split the Eqn. (1) into a homogeneous PDE and an ODE. 

∂𝑞

∂𝑡
+

∂𝑓(𝑞)

∂𝑥
= 0 

∂𝑞

∂𝑡
= 𝑅(𝑥, 𝑞) 

When the water depth (h) reduces than a certain level it exhibits transonic expansion, so simple 

entropy fix by Alcrudo et al. (1992) is followed. This allows us to work on nearly dry states of water 

depth as low as 1E-3. 

B. F-wave Method 

In earlier section of Roe's scheme approach the interface flux (𝐹
𝑖+

1

2

𝑛 ) is determined to update the 

solution. Alternatively the structure of an approximate Riemann solution can be directly used to 

update the numerical solution. The effect of moving wave can be directly re-averaged into the 

computational grids. For instance at 𝑥
𝑖−

1

2

produces set of waves: 

𝑄𝑖 − 𝑄𝑖−1 = ∑W
𝑖−

1
2

𝑝

𝑚

𝑝=1

 

Similarly the waves which carry the flux are known as flux waves or f-waves, which are given as the 

jump in flux between the two sides of the face as: 

 𝑓(𝑞𝑖) − 𝑓(𝑞𝑖−1) = ∑𝑍
𝑖−

1
2

𝑝

𝑝

1

= ∑𝛽
𝑖−

1
2

𝑝
𝑟
𝑖−

1
2

𝑝

𝑝

1

 ( 6 ) 
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The vector 𝑟
𝑖−

1

2

𝑝
 and its corresponding wave-speeds are selected based on the structure of the PDE. 

From Eqn. (6), the difference in flux can be used to calculate 𝛽
𝑖−

1

2

𝑝
 by Camer's rule and then it is 

substituted back to estimate the f-wave  𝑍
𝑖−

1

2

𝑝
 . The discretised form involving the f-waves is given 

as: 

𝑞𝑖,𝑗
𝑛+1 = 𝑞𝑖,𝑗

𝑛 +
Δ𝑡

Δ𝑥
[∑𝑍

𝑖−
1

2

+ + ∑𝑍
𝑖+

1

2

− ] +
Δ𝑡

Δ𝑦
[∑𝑍

𝑗−
1

2

+ + ∑𝑍
𝑗+

1

2

− ]           (7) 

𝑍
𝑖−

1

2

+   are the waves which move in positive x-direction from left face (𝑥
𝑖−

1

2

) and enter the cell. 

similarly 𝑍
𝑖−

1

2

−  are the waves which move in negative x-direction from right face (𝑥
𝑖+

1

2

) and enter the 

cell. ∑𝑍
𝑖−

1

2

+   and  ∑𝑍
𝑖−

1

2

−  are called as updates as they represent the sum of waves that update the cell 

for the next time step. The wave speeds can be taken as the same as Roe speed used in previous 

approach, but it doesn’t ensure depth positivity at certain places. So the modified speed suggested 

by Einfeldt (1988) for use with the HLLE solver is being used here. 

𝑠
˘

𝑖−
1
2

− = min(𝜆−(𝑞𝑖−1
𝑛 ), 𝜆

~

𝑖−
1
2

− ) 

𝑠
˘

𝑖−
1
2

+ = max(𝜆+(𝑞𝑖−1
𝑛 ), 𝜆

~

𝑖−
1
2

+ ) 

𝜆− and 𝜆+ are the eigen values of the flux Jacobian, 𝜆
~

𝑖−
1

2

+  and 𝜆
~

𝑖−
1

2

−  are the Roe speeds discussed in 

the previous section. 

𝑠
𝑖−

1
2

1 (ℎ
𝑖−

1
2

∗ ) = 𝑢
𝑖−

1
2
+ 2√𝑔ℎ

𝑖−
1
2
− 3√𝑔ℎ∗ 

𝑠
𝑖−

1
2

2 (ℎ
𝑖−

1
2

∗ ) = 𝑢
𝑖+

1
2
− 2√𝑔ℎ

𝑖+
1
2
+ 3√𝑔ℎ∗ 

C. A4SW 

Originally developed by George and LeVeque (2006), it make uses of the same f-wave propagation 

algorithm discussed earlier expect that an additional wave is added by augmentation. f-wave 

approach can simulate the source without balancing issues but it exhibits entropy violations which 

will be discussed later. For a system of n equations there are n characteristic waves; in certain cases 

such as a sonic point which leads to entropy violation, this method uses an additional wave called 

entropy wave, which fixes this violation. However, to do so, the system should have an additional 

equation; hence the momentum flux is augmented to the original system Eqn. (2), which allows the 

use of an additional wave namely entropy correction wave. The augmented system with momentum 

flux and bathymetry can be written as: 
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𝑞
~

=

[
 
 
 
 

ℎ
𝑢ℎ

ℎ𝑢2 +
1

2
𝑔ℎ2

𝑏 ]
 
 
 
 

 

I. Choosing wave speeds (𝒔
𝒊−

𝟏

𝟐

𝒑 ) and corresponding Vectors (𝒓
𝒊−

𝟏

𝟐

𝒑 ) 

For ID set of equations, we get two speeds from the original set of equations, and the first and third 

pair are related to them. We can name them as 𝑝 = 1 and 𝑝 = 3, from the Jacobian of SWE: 

{𝑤±𝑞, 𝜆±(𝑞)} = {(1, 𝑢 ± √𝑔ℎ)𝑇 , 𝑢 ± √𝑔ℎ} 

we choose: 

{𝑟
𝑖−

1
2

1 , 𝑠
𝑖−

1
2

1 } = {(1, 𝑠
˘

𝑖−
1
2

− , (𝑠
˘

𝑖−
1
2

− )2)𝑇 , 𝑠
˘

𝑖−
1
2

− } 

{𝑟
𝑖−

1
2

3 , 𝑠
𝑖−

1
2

3 } = {(1, 𝑠
˘

𝑖−
1
2

+ , (𝑠
˘

𝑖−
1
2

+ )2)𝑇 , 𝑠
˘

𝑖−
1
2

+ } 

𝑠
˘

𝑖−
1

2

−  and 𝑠
˘

𝑖−
1

2

+ are given as: 

𝑠
˘

𝑖−
1
2

− = min(𝜆−(𝑞𝑖−1
𝑛 ), 𝜆

~

𝑖−
1
2

− ) 

𝑠
˘

𝑖−
1
2

+ = max(𝜆+(𝑞𝑖
𝑛), 𝜆

~

𝑖−
1
2

+ ) 

where 𝜆
~

, is the eigen value for Roe averaged Jacobian, and the speed 𝑠
˘
 is referred to Einfeldt speeds. 

II. Entropy Correction Wave 
In the event of strong rarefaction in the first family of waves: 

{𝑟
𝑖−

1
2

2 , 𝑠
𝑖−

1
2

2 } = {(1, 𝑠
𝑖−

1
2

1 (ℎ
𝑖−

1
2

∗ ), (𝑠
𝑖−

1
2

1 (ℎ
𝑖−

1
2

∗ ))2, 0)𝑇 , 𝑠
𝑖−

1
2

1 (ℎ
𝑖−

1
2

∗ )} 

In the event of strong rarefaction in the second family of waves: 

{𝑟
𝑖−

1
2

2 , 𝑠
𝑖−

1
2

2 } = {(1, 𝑠
𝑖−

1
2

2 (ℎ
𝑖−

1
2

∗ ), (𝑠
𝑖−

1
2

2 (ℎ
𝑖−

1
2

∗ ))2, 0)𝑇 , 𝑠
𝑖−

1
2

2 (ℎ
𝑖−

1
2

∗ )} 

where, 
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𝑠
𝑖−

1

2

1 (ℎ
𝑖−

1

2

∗ ) = 𝑢
𝑖−

1

2

+ 2√𝑔ℎ
𝑖−

1

2

− 3√𝑔ℎ∗, 

𝑠
𝑖−

1

2

2 (ℎ
𝑖−

1

2

∗ ) = 𝑢
𝑖+

1

2

− 2√𝑔ℎ
𝑖+

1

2

+ 3√𝑔ℎ∗, 

and ℎ∗ is the middle state depth given by HLLE middle state. 

If any strong rarefaction is not present, it is enough to take as: 

{𝑟
𝑖−

1
2

2 , 𝑠
𝑖−

1
2

2 } = {(0,0,1)𝑇 ,
1

2
(𝑠

˘

𝑖−
1
2

− + 𝑠
˘

𝑖−
1
2

+ )} 

III. Including Source Term 
The standard approach of fractional stepping to include the source term fails at preserving the 

required balance as stated earlier. Here the effect of the source term is included by introducing a 

fourth wave to the solver. Now the decomposition would look like: 

[

ℎ𝑖 − ℎ𝑖−1

(ℎ𝑢)𝑖 − (ℎ𝑢)𝑖−1

𝜙(𝑞𝑖) − 𝜙(𝑞𝑖−1)
𝐵𝑖 − 𝐵𝑖−1

] = ∑𝛽
𝑖−

1
2

𝑝
𝑤

𝑖−
1
2

𝑝
+ 𝛽

𝑖−
1
2

0 𝑤
𝑖−

1
2

0

3

𝑝=1

 

where 𝛽
𝑖−

1

2

0 𝑤
𝑖−

1

2

0  is the steady state f-wave due to bathymetry addition. It can be written as (𝐵𝑖 −

𝐵𝑖−1)𝑤𝑖−
1

2

0  if a smooth solution exists between two points in Shallow water equation. Now the 

equation can be rewritten with flux difference decomposition of characteristic waves only in right 

side and by moving the steady state wave to the left as: 

[

ℎ𝑖 − ℎ𝑖−1

(ℎ𝑢)𝑖 − (ℎ𝑢)𝑖−1

𝜙(𝑞𝑖) − 𝜙(𝑞𝑖−1)
𝐵𝑖 − 𝐵𝑖−1

] − (𝐵𝑖 − 𝐵𝑖−1)𝑤
𝑖−

1
2

0 = ∑𝛽
𝑖−

1
2

𝑝
𝑤

𝑖−
1
2

𝑝

3

𝑝=1

 

More details about estimation of steady state wave 𝑤
𝑖−

1

2

0  can be found in the work of George and 

LeVeque (2006); 𝛽 can be calculated by camer's rule similar to the calculation without source 

addition. With this calculated𝛽 the f-waves are estimated from Eqn. (6). 

IV. Addition of Bottom Friction 
The SWEs are derived on the assumption that the fluid is inviscid, which makes the velocity profile 

to be constant in vertical direction. But its validity decreases as the depth of the fluid decreases and 

velocity increases; these characters are mostly exhibited in inundation regimes. This motivates us 

to use an empirically derived friction term. In this research, the friction term is based on an 
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empirically determined constant namely Manning coefficient (n), which ranges from n = 0.013 to n 

= 0.025 depending upon the bottom surface. 

𝜏𝑥 =
𝑔𝑛2

ℎ7/3
ℎ𝑢√(ℎ𝑢)2 + (ℎ𝑣)2 

𝜏𝑦 =
𝑔𝑛2

ℎ7/3
ℎ𝑣√(ℎ𝑢)2 + (ℎ𝑣)2 

These friction terms are explicitly added to Eqn. (7) through forward Euler as: 

𝑞𝑖,𝑗
∗ = 𝑞𝑖,𝑗

𝑛 +
Δ𝑡

Δ𝑥
[∑𝑍

𝑖−
1
2

+ + ∑𝑍
𝑖+

1
2

− ] +
Δ𝑡

Δ𝑦
[∑𝑍

𝑗−
1
2

+ + ∑𝑍
𝑗+

1
2

− ] 

𝑞𝑖,𝑗
𝑛+1 = 𝑞𝑖,𝑗

∗ − Δ𝑡 𝜏(𝑞∗) 

where 𝜏(𝑞∗) is given as: 

𝜏(𝑞∗) = [

0
𝜏𝑥(𝑞∗)
𝜏𝑦(𝑞∗)

] 

4. Benchmark Test Problems 

A. 1D Dam Break 

The setup for computation is simple; the water height in half of the length is higher than the other, 

which creates a discontinuity at the middle. When the time step advances, there forms a shock and 

the expansion waves propagate in opposite directions.  

B. 1D Solitary wave over a simple beach 

This problem is an excellent test case for inclusion of source bathymetry, and drying and wetting 

shoreline propagation. Initially a solitary wave propagates over a constant depth and then over a 

sloping beach to reach the shoreline. This is just like a tidal wave hitting the beach except that the 

domain is over simplified. For more detailed description refer Synolakis et al. (2007). 

C. Solitary wave over a composite beach 

The wave travels on different piecewise linear bathymetry and hits a wall to get reflected back. 

There are various gauges placed at middle of the sloped bathymetry which measures the water level 

raise at certain time intervals. 

D. 2D Radial Dam break 

Water level is maintained at higher level at a circular region at the centre of the domain (depth = 

2.5 m) and then the discontinuity propagates radially (Fig. 4).  
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Fig. 2 Schematic of the wave over a sloped beach. 

 

Fig. 3 Schematic of the Composite beach. 

 

E. Wave hits a 3D complex beach 

The domain is taken as illustrated in Fig. 5. The time-dependent wave that enters the domain 

follows the profile as shown in Fig. 6. 

 

Fig. 4. Schematic of the Radial Dam. 
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Fig. 5 Bathymetry data of the 3D Beach. 

 

Fig. 6 The time dependent wave that enters the domain. 

5. Results and Discussion 

Computations for the benchmark problems are performed with the solvers discussed in sections 

3.A, 3.B and 3.C. The benchmark problems that are discussed in 4.A and 4.D are compared with 

analytical solutions as they are simple and exact solutions are readily available.  The problems 

discussed in 4.B, 4.C and 4.E are compared with the experimental results obtained by gauges placed 

at various location inside the domain. 

A. 1D Dam Break 

Computations are performed till 0.1 sec with time step of 0.001 sec and the depth at t=0.1sec is 

plotted with the exact solution (Synolakis et al., 2007).The solutions are compared with fully wet 

condition (Fig. 7) and with dry state (Fig. 8). The solutions for fully wet condition by all the tree 

schemes agree well with the exact solution. In dry dam break case the f-wave scheme diverges (Fig. 

9) as it doesn’t satisfy the entropy condition. This is where A4WS gains advantage over f-wave by 

making use of the additional entropy wave. 
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B. 1D Solitary wave over a simple beach 

The computations are compared with the experimental results (Synolakis et al., 2007) and found 

that A4WS exhibits better wetting and drying with less computational time (Fig. 10). 

C. Solitary wave over a composite beach 

In this case f-wave and A4WS share similar results; again the computational results are compared 

with the experimental results (Synolakis et al., 2007) at various gauge locations (refer Synolakis et 

al. (2007) for gauge locations) and found in good agreement. 

 
Fig. 7 Water level at t = 0.1 sec. (fully wet) 

 
Fig. 8 Water level at t = 0.1 sec. (dry state at the right) 

 
Fig. 9 f-wave solution at Entropy Violation. 
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Fig. 10. Wave propagation at various non-dimensional times. 

 
Fig. 11. Water level raise at various gauge locations. 

D. 2D Radial Dam break 

Both wet and dry case scenarios are computed and compared with a high-resolution scheme (Liang 

et al., 2004). Fully dry case (Fig. 13) experiences only one characteristic family of expansion fan 

towards the higher depth region. 

A. Wave hits a 3D complex beach 

From the input wave (Fig. 6) it can be seen that for a time period of first 3 to 4 sec the domain has 

to be simulated in a rest state; this rest sate causes balancing issues as the momentum due to 

bathymetry is considerably larger than the convection.  
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Fig. 12. Wave propagation of Wet case at various times. 

 

Fig. 13. Wave propagation of Dry case at various times. 

 

A4WS perfectly balances it as the momentum-raise due to source term is treated in terms of wave 

in a stationary form whereas the Roe (FDS) fails to simulate such a problem. The computational 

results are compared with the experimental results (Synolakis et al., 2007) at various gauge 

locations and found in good match. 
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Fig. 14. Water level raise at various gauge locations. 

 

6. Conclusion 

The advanced A4WS solver and its capabilities have been explored. Roe (FDS) suffers from well-

balancing and the splitting scheme reduces its CFL which in turn increases the computation time. F-

wave suffers from entropy violation and prevents it to work on dry states. Further, A4WS can be 

extended to unstructured and dynamically varying grids for large scale Tsunami problems. 

 

References 

Roe, PL. (1981). Approximate Riemann Solvers, Parameter Vectors and DifferenceSchemes, J. 
Comput. Phys. 43:357 – 372. 
 
Hudson, J. (1999). Numerical techniques for the shallow water equations, Numerical Analysis 
Report 2:99. 
 
Dawson, C, Mirabito, CM. (2008). The shallow water equations, Institute for Computational 
Engineering and Sciences University of Texas at Austin September 29. 
 
George,DL, LeVeque, RJ. (2006). Finite volume methods and adaptive refinement for global tsunami 
propagation and local inundation, Science of Tsunami Hazards 24 (5): 319. 
 
LeVeque, RJ. (2004) Finite volume methods for hyperbolic problems, Cambridge University Press, 
Cambridge, United Kingdom. ISBN 0-511-04219-1.  
 
Strang, G. (1968). On construction and comparison of difference schemes. SIAM Journal of 
Numerical Analysis 5(3):506–517. 



 

International Journal of Advanced Thermofluid Research. 2016. 2(1): 67-81. 
Special Issue of Selected Papers from 2nd International Conference on Computational Methods in Engineering and 

Health Sciences (ICCMEH- 2015), 19-20 December 2015, Universiti Putra Malaysia, Selangor, Malaysia. 
 

Geophysical flow simulation                                                                                                                                                          Vishnu 

 
81 

 
Alcrudo, F, Garcia‐Navarro, P, Saviron, J‐M. (1992). Flux difference splitting for 1D open channel 
flow equations, International Journal for Numerical Methods in Fluids 14 (9): 1009-1018. 
 
Synolakis, CE, Bernard, EN, Titov VV, Kânoğlu, U, González, FI. (2007). Standards, criteria, and 
procedures for NOAA evaluation of tsunami numerical models: Seattle, Washington, NOAA/Pacific 
Marine Environmental Laboratory. Technical Memorandum OAR PMEL-135, 2007. 
 
Liang, Q, Borthwick, A, Stelling, G. (2004). Simulation of dam-and dyke-break hydrodynamics on 
dynamically adaptive quadtree grids, International Journal for Numerical Methods in Fluids 46 
(2):127-162. 
 
Einfeldt, B. (1988). On Godunov-type methods for gas dynamics. SIAM Journal of Numerical Analysis 
25(2): 294-318. 


