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Abstract 

In the present study, unsteady heat and mass nanofluid flow past a stretching sheet with 

the effect of thermal radiation and magnetic field was carried out. To obtain non-similar 

equation, the boundary layer governing equations including continuity, momentum, 

energy and concentration balance were non-dimensionalized by usual transformation. 

The non-similar approach was employed, which depends on the dimensionless 

parameters such as Magnetic parameter (M), Radiation parameter (R), Prandtl number 

(Pr), Eckert number (Ec) Lewis number (Le), Brownian motion parameter (Nb), 

Thermophoresis parameter (Nt), Local Reynolds number (Re) and velocity parameter 

(b/a). The temperature and concentration distributions are found affected by these 

dimensionless parameters. The obtained equations have been solved by explicit finite 

difference method (EFDM). A theoretical model of the stability and convergence to 

describe the aspects of the finite difference scheme was developed in this study.  This 

analysis makes the EFDM approach more accurate and able to provide the convergence 

criteria of the method (Pr ≥ 0.375 and Le ≥ 0.25). The temperature and concentration 

profiles are discussed for the different values of the dimensionless parameters by 

considering different time steps. The present computational investigation finds 

applications in the area of magnetic nanomaterials processing. 
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Nomenclature 
 

,a b  Linear stretching constants, s-1 

,1 2A A  Constants depends on the properties of the fluid 
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0B  Magnetic induction, Wb m-2 

C  Nanoparticle concentration 

wC  Nanoparticle concentration at stretching surface 

C
 Ambient nanoparticle concentration as y tends to infinity 

C  Dimensionless concentration 

pc  Specific heat capacity, J kg-1 K-1 

BD  Brownian  diffusion coefficient               

TD  Thermophoresis diffusion coefficient 

k  Thermal conductivity, Wm-1 K-1 

  Boltzmann constant, 231.3805 10−  J K-1 
*  Mean absorption coefficient 

l  Characteristics length, m 

P  Fluid pressure, Pa 

rq  Radiative heat flux in the y-direction, kg m-2 

T  Fluid temperature, K 

wT  Temperature at the stretching surface, K 

T
 Ambient temperature as y tends to  infinity, K 

T  Dimensionless temperature 

wu  Stretching velocity, ms-1 

U o  Uniform velocity, ms-1 

,u v  Velocity components along x and y axes respectively, m s-1 

U, V Dimensionless velocity components 
,x y  Cartesian coordinates measured along stretching surface, m 

 

Greek Symbols 
  Kinematic viscosity of the fluid, m2 s-1 
  Dynamic viscosity of the fluid, Pa-s 
( )

p
c  Effective heat capacity of the nanoparticle, J m-3K-1 

( )
f

c  Heat capacity of the fluid, J m-3K-1 

  Thermal diffusivity, m2 s-1 

s  Stefan-Boltzmann constant, -85.6697×10  kg m-2 K-4 

  Conductivity of the material, S m-1 

P  Nanoparticle mass density,  kg m-3 

f  Fluid density, kg m-3 

  Dimensionless time 

 

1. Introduction 
The effects of thermal radiation on Magnetohydrodynamics (MHD) boundary layer flow have 
become important in several industrial, scientific and engineering fields. Due to sundry applications 
of MHD in heat exchangers, pumps, space vehicle propulsion, thermal protection, and in controlling 
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fusion and the rate of cooling, etc., the flow due to a stretching surface has become more important. 
This study finds application in industries such as melt spinning, extrusion, glass fiber production, 
hot rolling, wire drawing, manufacture of plastic and rubber sheets, polymer sheet and filaments, 
etc. It is also employed for copper, brass, bronze and aluminum and increasingly with cast iron and 
steel. 

Wang (1984) investigated the problem of three dimensional (3D) fluid flows due to a stretching flat 
plate. Na and Pop (1996) studied an unsteady flow past a stretching sheet. In the case of unsteady 
boundary layer flow, Sattar and Alam (1994) presented unsteady free convection and mass transfer 
flow of a viscous, incompressible and electrically conducting fluid past a moving infinite vertical 
porous plate with thermal diffusion effect. The radiative heat transfer with the viscous dissipation 
effect in the presence of transverse magnetic field was analyzed by Kumar (2009). Singh et al. 
(2010) studied the effect of thermal radiation and magnetic field on unsteady stretching permeable 
sheet in presence of free stream velocity. The technologies due to nanoparticles have been used 
over a large area. Choi (1995) was the first researcher who studied nanoparticles. The convective 
instability and heat transfer characteristics of the nanofluids were analyzed by Kang and Choi 
(2004).   Jang and Choi (2007) obtained nanofluids’ thermal conductivity and the various 
parameters affecting it. The natural Convective Boundary layer flows of a nanofluid past a vertical 
plate have been described by Kuznestov and Neild (2009 & 2010).  In this model Brownian motion 
and Thermophoresis were accounted with the simplest possible boundary conditions. They also 
studied Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous 
medium saturated by a nanofluid. Bachok et al. (2010) studied the steady boundary layer flow of a 
nanofluid past a moving semi-infinite flat plate in a uniform free stream. It was assumed that the 
plate was moving in the same or opposite direction to the free stream to define the resulting system 
of nonlinear ordinary differential equations. Recently Khan and Pop (2010 & 2011) formulated the 
problems of laminar boundary layer flow of a nanofluid past a stretching sheet, and free convection 
boundary layer nanofluid flow past a horizontal flat plate. Anjali and Andrews (2011) presented the 
problem of incompressible, viscous, force convective laminar boundary layer flow of copper water 
and alumina water nanofluids over a flat plate. The efficiency of heat transfer in nanofluids was 
focused in their study. MHD natural convection nanofluid flow over a linearly stretching sheet was 
analyzed by Hamad (2011) who presented an analytical solution technique. Hamad and Pop (2011) 
discussed the boundary layer flow near the stagnation-point flow on a permeable stretching sheet 
in a porous medium saturated with a nanofluid.  Hamad et al. (2011) investigated free convection 
flow of a nanofluid past a semi-infinite vertical flat plate with the influence of magnetic field. 
Ferdows and Hamad (2012) studied a similarity solution of boundary layer stagnation-point of 
nanofluid flow, and also investigated viscous flow with heat transfer of nanofluid over nonlinearly 
stretching sheet. Takabi et al. (2014 & 2015) have investigated heat and fluid flow in nanofluids by 
adopting single-phase model which was found accurate enough to capture the thermal and 
hydrodynamic effects of a nanofluid flow.  

In recent years, many studies have been reported on mathematical modeling and simulations of 
boundary layer heat and mass nanofluid flow (Ferdows et al., 2012 & 2014; Khan et al., 2012, 2013 
& 2014; Beg et al., 2014; Wahiduzzamanet al., 2015a&b). However, the aim of the present study is 
unsteady boundary layer nanofluid flow over a stretching surface with the influence of magnetic 
and thermal radiation effect. The explicit finite difference method (EFDM) (Carnahan et al., 1969) 
has been used with stability and convergence analysis to solve the obtained non- similar equations. 
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The application of the present study is the manufacturing of Magnetic nanofluids and electro-
conductive nanofluid suspensions (Beg et al., 2014). 

2. Mathematical Model of the Flow 
The physical configuration and coordinate system are shown in Figure 1. Considering the Cartesian 
coordinates, x  is measured along the stretching surface and y is normal to the stretching surface.  

 

 
 

Figure 1. Physical model and coordinate system. 
 
The flow takes place at y 0.  An unsteady uniform stress leading to equal and opposite forces is 

applied along the x -axis so that the sheet is stretched keeping the origin fixed. Initially it is assumed 

that fluid and the plate are at rest after that the plate is moved with a constant velocity 
0

U  in its own 

plane. Instantaneously at time 0t > , the temperature of the plate and species concentration are 

raised to ( )w
T T


  and ( )w

C C


  respectively, which are thereafter maintained constant, where
w

T , 

w
C  are temperature and species concentration at the wall and T


, C


 are temperature and species 

concentration far away from the plate, respectively. A uniform magnetic field 
0B  is imposed to the 

plate. The magnetic induction vector 
0B  can be taken as B = (0, B0, 0) and 

rq  is radiative heat flux 

in the y-direction. Under the usual boundary layer approximation, the MHD unsteady nanofluid flow 
and heat and mass transfer with the radiation effect are governed by the following equations: 
 
 
The Continuity equation: 

0
u v

x y

 
+ =

 
           (1)  

The Momentum equation: 
22

0

2
( )o o

Bu u u dU u
u v U U u

t x y dx y






   
+ + = + + −

   
      (2)  

The Energy equation: 
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2 22

2

r T
B

p

q DT T T T u T C T
u v D

t x y y k y c y y y T y

 
 



              
+ + = − + +  +      

               

  (3)  

The Concentration equation: 
2 2

2 2
.T

B

DC C C C T
u v D

t x y y T y

    
+ + = +

    
       (4) 

 The initial and boundary conditions are: 

w 0t 0, u U ax, v 0,T T , C C = = = = = = , everywhere 

t 0, u 0, v 0, T T , C C  = = = =  at 0x =       (5) 

, 0, ,w wu U bx v T T C C= = = = =  at 0y =  

u 0, v 0, T T , C C = = → →  as y →  
where   is the thermal diffusivity, k is the thermal conductivity,  

BD  is the Brownian  diffusion 

coefficient, 
TD  is the thermophoresis diffusion coefficient, x  is the coordinate measured along 

stretching surface, wu  is the stretching velocity and U  is the uniform velocity. The Rosseland 

approximation (1968) is expressed for radiative heat flux and leads to the form as: 
   

4

*

4

3
r

T
q

y






= −


          (6) 

where  is the Stefan-Boltzmann constant and  *  is the mean absorption coefficient. The 

temperature difference within the flow is sufficiently small such that 4T  may be expressed as a 

linear function of the temperature; then the Taylor’s series for 4T  about T  after neglecting higher 

order terms:  
 

4 3 44 3 .T T T = −           (7) 

Introducing the following non dimensional variables:
 

0xU
X


= ,   0yU

Y


= ,   
0

u
U

U
= ,   

0

v
V

U
= , 

2

0tU



= ,   

w

T T
T

T T





−
=

−
,   

w

C C
C

C C





−
=

−
, 

 
Then Eqs. (1) to (5) become: 

0
U V

X Y

 
+ =

 
           (8) 

2 2

2 2

1
(1 )

e

U U U b U
U V M U

X Y R a Y

    
+ + = + + − 

    
      (9) 

222

2

1
c b t

r

T T T R T U T C T
U V E N N

X Y P Y Y Y Y Y

        +      
+ + = + +  +      

            
   (10)  
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2 2

2 2

1
.t

e b

NC C C C T
U V

X Y L Y N Y

      
+ + = +  

       
      (11)  

The non-dimensional boundary conditions are; 
 

0, 0, 0, 0, 0U V T C  = = = = , everywhere      (12)

0, 0, 0, 0, 0U V T C  = = = =  at 0X =  

1, 0, 1, 1U V T C= = = =   at 0Y =       (13) 

0, 0, 0, 0U V T C= = = =   as Y →  

where, 
2

0

2

0

B
M

U

 


= , is the Magnetic parameter, 

3

*

16

3

T
R

k




= , is the Radiation parameter,  

rP



= , is the Prandtl number,  

2

0

( )
c

p w

U
E

c T T

=
−

, is the Eckert number,  

e

B

L
D


= , is the Lewis number, 

( )B w

b

D C C
N





−
= , is the Brownian parameter,  

( )T
t w

D
N T T

T








= − , is the Thermophoresis parameter, w
e

xu
R


= , is the Local Reynolds number and 

b

a
, is the velocity parameter. 

3. Numerical Technique 
In order to solve the non-similar unsteady coupled non-linear partial differential equations, the 

explicit finite difference method has been used. Here the plate of height ( )max
100X = is considered 

i.e. X varies from 0 to 100 and assumed ( )max
25Y =  as corresponding to Y →  i.e. Y varies from 0 to 

25.  
 

There are ( )125m =  and ( )125n =  grid spacing in the X and Y directions respectively as shown in 

Figure 2. It is assumed that X , Y  are constant mesh sizes along X and Y directions respectively 
and taken as follows: 

( )0.8 0 100X X =   and ( )0.2 0 25Y Y =     with the smaller time-step,  0.005 = . 

Let U  , V  , T   and C   denote the values of U , V ,  T  and C  at the end of a time-step respectively. 
Using the explicit finite difference approximation, the following appropriate set of finite 
difference equations are obtained as: 
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Figure 2. Finite difference space grid. 

 
 
 

, 1, , , 1
0

i j i j i j i j
U U V V

X Y

− −
 − −

+ =
 

         (14) 

 

( )
( ), , , 1, , 1 , , 1 , , 1

, , 2

2

,2

21
1

i j i j i j i j i j i j i j i j i j

i j i j i j

e

U U U U U U U U U
U V M

X Y Y

b
U

R a

− + + −
 − − − − +

+ + +
   

 
= + − 

 
 (15)  

( )

2

, , , 1, , 1 , , 1 , , 1 , 1 ,

, , 2

2

, 1 , , 1 , , 1 ,

21i j i j i j i j i j i j i j i j i j i j i j

i j i j c

i j i j i j i j i j i j

t

r

b

T T T T T T T T T U U
U V E

X Y YY

T T C C T T
N

Y Y Y

R

P

N



− + + − +

+ + +

 − − − − + −
+ + = +

   

− − −
+

  

    +
         

   
+    

  

  

            (16) 

( ) ( )

, , , 1, , 1 ,

, ,

, 1 , , 1 , 1 , , 1

2 2

2 21

i j i j i j i j i j i j

i j i j

i j i j i j i j i j i j

e

t

b

C C C C C C
U V

X Y

C C C T T T

Y Y

N

L N



− +

+ − + −

 − − −
+ +

  

− + − +

 

    
= +    

        

  (17) 

with initial and boundary conditions: 
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0 0 0 0

, , , ,
0, 0, 0, 0

i j i j i j i j
U V T C= = = =         (18) 

0

0, 0, 0, 0,
0, 0, 0, 0

n n n

j j j j
U V T C= = = =  

,0 ,0 ,0 ,0
1, 0, 1, 1

n n n n

i i i i
U V T C= = = = (19) 

, , , ,
0, 0, 0, 0

n n n n

i L i L i L i L
U V T C= = = = , where  L →  

 
The subscripts i  and j  designate the grid points with X  and Y  coordinates respectively and the 

superscript n represents a value of time, n =   where 0, 1, 2,....n = . 

 
4. Stability and Convergence Analysis 
Since an explicit procedure is being used, the analysis will remain incomplete unless the discussion 
of the stability and convergence of the finite difference scheme. For the constant mesh sizes the 
stability criteria of the scheme may be established as follows. 
The eq. (14) will be ignored since   does not appear in it. The general terms of the Fourier 

expansion for U , T  and C  at a time arbitrarily called 0 =  are all i X i Ye e  , apart from a constant, 

where 1i = − . At a time  , these terms become: 
 

( ): i X i YU e e    

( ): i X i YT e e   (20) 

( ): i X i YC e e    

and after the time-step these terms will become: 

( ): i X i YU e e    

( ): i X i YT e e   (21) 

( ): i X i YC e e   . 

Substituting (20) and (21) into Eqs. (15)-(17), regarding the coefficients U  and V  as constants 
over any one time-step, we obtain the following equations upon simplification: 
 

( ) ( ) ( )( ) ( )( )

( )
( )( )

( )

2

22

1 1

2 cos 11
1

i X i Y

i X i Y

e

e e
U V

X Y

Yb
M U e e

R a Y

 

 

      



  

−  

− −

− − −
+ +

  

   − 
= + − +  

  

  (22) 

( ) ( ) ( )( ) ( )( ) ( )( )

( )

( )
( )

( )
( )

( )
( )

2

2 2 2

1 1 2 cos 11

1 1 1

i X i Y

r

i Y i Y i Y

c b t

e e YR
U V

X Y P Y

e e e
E U N C N T

Y Y Y

 

  

         



     

−  

  

− − −  − +
+ + =  

    

     − − −     
+ + +     

            

  (23) 
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( ) ( ) ( )( ) ( )( )

( )( )

( )

( )( )

( )
2 2

1 1

2 cos 1 2 cos 11

i X i Y

t

e b

e e
U V

X Y

Y YN

L NY Y

       



     

−  − − −
+ +

  

     −  −    
 = +     

          

  (24) 

 
The eq. (22), (23) and (24) can be written in the following form: 
 

A  =            (25) 

B E   = +            (26) 

J K   = +            (27)  

 
where 

( ) ( )
( )

( )

( )

2

2 2

2 1 1
1 1 1 cos 1

1 ,

i X i Y

e

b
A U e V e Y

X Y R U aY

M
U

U

   
 



−      
= − − − − +  − +  

    

+ − 

 

( ) ( )
( )

( )

( ) ( )

2

2 2

2 cos 11
1 1 1

1 1
,

i X i Y

r

i Y i Y

b t

YR
B U e V e

X Y P Y

e e
N C N T

Y Y

 

 

 


 

−  

 

 −   +
= − − − − +  

   

   − −   
+  +    

       

 

( )
( )

2

2
1i Y

cE E U e
Y

 
= −


, 

( ) ( )
( )

( )2

1 2
1 1 1 cos 1i X i Y

e

J U e V e Y
X Y L Y

   
−    

= − − − − +  −
  

, 

and 

( )
( )2

1 2
cos 1t

e b

N
K Y

L N Y




  
=  − 

 
. 

 
Hence the eqs. (25), (26) and (27) can be expressed in matrix notation as: 
 

0 0

0

0

A

E B

K J

 

 

 

     
      =
     
          

        (28) 

that is, T  =  
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where 



 



 
  =
 
  

, 

0 0

0

0

A

T E B

K J

 
 

=
 
  

   and  



 



 
 

=
 
  

 

 
For obtaining the stability condition we have to find out eigenvalues of the amplification matrix 
T , but this study is very difficult since all the elements of T are different. Hence the problem 

requires that the Eckert Number cE  be assumed too small to be zero. Under this consideration we 

have, 0E = . The amplification matrix becomes: 
 

0 0

0 0

0

A

T B

K J

 
 

=
 
  

 

 
After simplification of the matrix T, we get the following eigenvalues: 

1 A = , 2 B = and 3 J = . 

 

For stability, each eigenvalues
1 , 

2  and 3  must not exceed unity in modulus. Hence the stability 

condition is 

1A  , 1B  and 1J  , for all ,  . 

 
Now we assume that U is everywhere non-negative and V is everywhere non-positive. Thus 

1
1 2 2 b t

r

R
B a b c N C N T

P

  +
= − + + + +  

  
 

where a U
X


=


, b V

Y


=


  and   

( )
2

c
Y


=


 

 
The coefficients a, b and c are real and non-negative. We can demonstrate that the maximum 
modulus of B  occurs when X m  = and Y n  = , where m and n are integers and hence B  is 

real. The value of B  is greater when both m and n are odd integers. 

To satisfy the second condition 1B  , the most negative allowable value is 1B = − . Therefore the 

first stability condition is  

1
2 2 2b t

r

R
a b c N C N T

P

  +
+ + + +   

  
       (29) 

i.e., 

( ) ( ) ( )
2 2 2

2(1 )
2 2 1b t

r

R
U V N C N T

X Y P Y Y Y

      +   
+ + + + 

    
    (30) 

Likewise, the third condition 1J   requires that: 
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( )
2

2
1

e

U V
X Y L Y

    
+ + 

  
        (31) 

Therefore, the stability conditions of the method are: 

( ) ( ) ( )
2 2 2

2(1 )
2 2 1b t

r

R
U V N C N T

X Y P Y Y Y

      +   
+ + + + 

    
and    

( )
2

2
1.

e

U V
X Y L Y

    
+ + 

  
 

 

Since from the initial condition, 0U V T C= = = = at 0 =  and the consideration due to stability and 

convergence analysis is 1
c

E  and 0.5R  . Hence convergence criteria of the method are 0.375
r

P 

and 0.25eL  . 

 

5. Results and Discussion 
In order to investigate the physical representation of the problem, the temperature and species 

concentration within the boundary layer have been computed for different values of Magnetic 

parameter M , Radiation parameter R , Prandtl number rP , Eckert number cE , Lewis number eL , 

Brownian motion parameter bN , Thermophoresis parameter tN  , Local Reynolds number eR and 

velocity parameter b

a

. To obtain the steady-state solutions of the computation, the calculation has 

been carried out up to non-dimensional time, 5 to 80. =  The temperature and concentration profiles 

do not show any change after non-dimensional time, 40 =  . Therefore, the solution for 40  is 

steady-state solution. The graphical representation of the problem is showed in Figures 3-8. 

In Figures 3-8, the dimensionless temperature and concentration distributions are plotted against 

Y for different non-dimensional times, to5 40 =  and the corresponding values of M , R , rP , cE , eL

, bN , tN ,  eR  and b

a
. The temperature distribution and the concentration distribution are plotted 

for different values of bN , in Figures 3 and 4 respectively. It is observed that, the concentration 

profiles decrease with increase of Nb , while it is reverse for temperature profiles. 

Figure 5 shows the dimensionless temperature distribution for different values of rP  , for  

and5, 10 40 = ; as rP  increases, the temperature decreases. Figure 6 shows the corresponding 

dimensionless concentration distribution for different values of eL ; the concentration profiles 

decrease with increase in eL . For all the time-steps tested, as R increases the temperature gradually 

increases (Figure 7) and the concentration decreases as (Figure 8).  
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Figure 3.  Temperature profiles for different values of Nb . 

 

Figure 4.  Concentration profiles for different values of Nb . 

 
Figure 5.  Temperature profiles for different values of rP . 
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Figure 6. Concentration profiles for different values of eL . 

 

Figure 7.  Temperature profiles for different values of R . 

 
Figure 8.  Concentration profiles for different values of R . 
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6. Conclusion 
Study of unsteady MHD radiative laminar boundary layer flow of a nanofluid due to stretching sheet 
is presented. The explicit finite difference method with stability and convergence analysis has been 
employed to analyze the model. The effects of various parameters on the temperature and 
concentration distributions are shown graphically. The effects of thermal radiation and magnetic 
field on the heat and mass transfer characteristics are also studied. The following conclusions are 
drawn from the study: 
 
1. For increasing the Brownian parameter, the temperature profiles are found to be increasing 

whereas the concentration distribution decreases. Therefore the boundary layer thickness of 

concentration is smaller than the thermal boundary layer thickness. 

2. Thermal boundary layer thickness decreases as Prandtl number increases. 

3. Concentration boundary layer thickness decreases as Lewis number increases. 

4. The MHD and Radiation effect through the boundary layer for both temperature and 

concentration has a great impact on flow patterns. Thermal boundary layer thickness 

gradually increases with increase in Radiation parameter whereas the concentration boundary 
layer thickness decreases.  
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