Rotating Fluid Flow on MHD Radiative Nanofluid past a Stretching Sheet

Md. Shakhaoath Khana, Md. Mahmud Alama, M Ferdowsb, *, E.E. Tzirtzilakisc,
Ifsana Karima and Shuyu Sund

aMathematics Discipline; Science, Engineering and Technology School, Khulna University, Khulna-9208, Bangladesh.

bResearch Group of Fluid Flow Modeling and Simulation, Department of Applied Mathematics, University of Dhaka, Dhaka-1000, Bangladesh.

cFluid Dynamics & Turbomachinery Laboratory, Department of Mechanical Engineering, Technological Educational Institute of Western Greece, 1 M. Aleksandrou Str, Koukouli, 263 34 Patras Greece.

dDivision of Applied Mathematics and Computational Science, King Abduallah University of Science and Technology, Thuwal, Saudi Arabia.

*Corresponding Author: E-mail: ferdows@du.ac.bd
Phone:880-1720809796

Abstract: The present study is aimed at examining the unsteady MHD heat and mass flow of a nanofluid passing a stretching sheet with thermal radiation in a rotating system. The governing boundary layer equations as continuity, momentum, energy, concentration equation were solved by introducing a time dependent length scale in a similarity approach. Obtained nonlinear coupled equations along with the appropriate boundary conditions are then solved by Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order scheme. The effect of different dimensionless parameters on the flow field as magnetic parameter, rotational parameter, radiation parameter, Prandtl number, Eckert number, Lewis number, Brownian motion parameter, thermophoresis parameter was investigated. The distribution of the primary velocity, secondary velocity, temperature, concentration, local skin-friction coefficients, Nusselt number and the Sherwood number with the effect of the important parameters entering into the problem separately and reported graphically.

Keywords: Nanofluid, Magnetic field, Radiation, Stretching Sheet, Rotating system.

Nomenclature

\textbf{\textit{a}}\quad \text{Empirical constants}
\textbf{\textit{B}_0}\quad \text{Magnetic induction}
\textbf{\textit{C}}\quad \text{Nanoparticle concentration}
\textbf{\textit{C}_w}\quad \text{Nanoparticle concentration at stretching surface}
\textbf{\textit{C}_\infty}\quad \text{Ambient nanoparticle concentration as } y \text{ tends to infinity}
1. Introduction

The study of Magnetohydrodynamics (MHD) heat and mass transfer laminar flow by stretching surfaces has generated much interest in recent years. This study finds applications in many engineering disciplines, and industrial manufacturing processes such as aerodynamic extrusion of plastic sheets, polymer extrusion, melt-spinning process, manufacture of plastic and rubber sheets, glass blowing, continuous casting, spinning of fibers, etc. The quality of the resulting sheeting material, as well as the cost of production, may be affected by the speed of collection and the heat transfer rate. Sakiadis (1961) was
the pioneer to investigate the boundary-layer behaviour on a continuous solid surface. The thermal radiation effect is a new dimension added to the study of stretching surface, which has important applications in physics and engineering. The effect of radiation on heat transfer problems has been studied by Hossain and Takhar (1996) and Takhar et al. (1996).

The Coriolis force is very significant as compared to viscous and inertia forces occurring in the basic fluid dynamics. It is generally admitted that the Coriolis force due to Earth's rotation has a strong effect on the hydromagnetic flow in the Earth's liquid core. The study of such fluid flow problem is important due to its applications in various branches of geophysics, astrophysics and fluid engineering. From the point of applications in solar physics and cosmic fluid dynamics, it is important to consider the effects of the electromagnetic and rotation forces on the flow. Considering this aspect of the rotational flows, model studies were carried out on MHD free convection and mass transfer flows in a rotating system by Raptis and Singh (1985) and Singh and Singh (1989). Nazmul and Alam (2008) investigated the effects of Dufor and Soret on unsteady MHD free convection and mass transfer fluid flow through a porous medium in a rotating system.

In recent years nanotechnology has been widely used in many industrial applications. A nanofluid is a term initially used by Choi (1995), which is a colloidal solution of nano-sized solid particles in liquids. The natural convective boundary layer flows of a nanofluid past a vertical plate have described by Kuznestov and Neild (2010). Bachok et al. (2010) has shown the steady boundary layer flow of a nanofluid past a moving semi-infinite flat plate in a uniform free stream. Khan and Pop (2010-11) formulated the problem of laminar boundary layer flow of a nanofluid past a stretching sheet. Khan et al. (2011a&b) investigated the effects of thermal radiation and magnetic field on the boundary layer flow of a nanofluid past a stretching sheet (steady as well as unsteady case for the corresponding problem). Takabi et al. (2014 & 2015) have used the single-phase model for investigation of heat and fluid flow in nanofluids. This model was found accurate enough to capture the thermal and hydrodynamic effects of a nanofluid flow. Very recently a number of boundary layer nanofluid flow studies were reported in the literature (Ferdows et al., 2012 & 2014; Khan et al., 2012, 2013 & 2014; Beg et al., 2014; Wahiduzzaman et al., 2015a&b); however the effect of rotating flow was overlooked.

The present study investigates the rotating effects on MHD boundary layer nanofluid flow over an unsteady stretching surface with the influence of thermal radiation and magnetic field. Similarity the corresponding momentum, energy and concentration equations are derived by introducing a time dependent length scale. These nonlinear coupled equations along with the appropriate boundary conditions are then solved by employing Nactsheim-Swigert (1965) shooting technique together with Runge-Kutta six order iteration schemes.

2. Mathematical Model of the flow

The physical configuration and coordinate system are shown in Figure 1. Considering the Cartesian coordinates, x is measured along the stretching surface and y is normal to the stretching surface.
Initially the fluid as well as the sheet is at rest, and then the whole system is allowed to rotate with a constant angular velocity Ω about the y-axis. Since the system rotates about y-axis, $\Omega = (0, -\Omega, 0)$ is considered. An unsteady uniform stress leading to equal and opposite forces is applied along the x-axis. It is assumed that fluid and the plate before the plate is moved with a constant velocity u_0 in its own plane. Instantaneously at time $t > 0$, temperature of the plate and species concentration are raised to $T_0 (> T_\infty)$ and $C_0 (> C_\infty)$ respectively, which are thereafter maintained constant; T_0, C_0 are temperature and species concentrations at the wall while T_∞, C_∞ denote the corresponding values far away from the plate. A uniform magnetic field B_0 is imposed to the plate, where B_0 can be taken as $B = (0, B_0, 0)$ and q_r is the radiative heat flux in the y-direction. Under the usual boundary layer approximation, the MHD unsteady nanofluid flow and heat and mass transfer with the radiation effect in a rotating system are governed by the following equations:

The Continuity equation:
$$\frac{\partial v}{\partial y} = 0$$

The Momentum equations:
$$\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial y} - 2\Omega w = \nu \frac{\partial^2 u}{\partial y^2} - \frac{\sigma B_0^2}{\rho} u$$
$$\frac{\partial w}{\partial t} + v \frac{\partial w}{\partial y} + 2\Omega w = \nu \frac{\partial^2 w}{\partial y^2} - \frac{\sigma B_0^2}{\rho} u$$

The Energy equation:
$$\frac{\partial T}{\partial t} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} - \alpha \frac{\partial q_r}{\partial y} + \frac{\nu}{\rho c_p} \left(\frac{\partial u}{\partial y} + \frac{\partial w}{\partial y} \right)^2 + \tau \left(\frac{\partial}{\partial y} \left(\frac{\partial T}{\partial y} \right) \right)^2$$

The Concentration equation:
$$\frac{\partial C}{\partial t} + v \frac{\partial C}{\partial y} = D_b \frac{\partial^2 C}{\partial y^2} + \frac{D_L}{T_\infty} \frac{\partial^2 T}{\partial y^2}$$

The boundary conditions:
$$t \leq 0; \quad u = 0, \quad w = 0, \quad v = 0, \quad T = T_\infty, \quad C = C_\infty \text{ for all values of } y$$
\[t > 0; \ u = u_w = ax, \ w = 0, \ v = 0, \ T = T_w, \ C = C_w \text{ at } y = 0 \]
\[t > 0; \ u = 0, \ w = 0 \ T \to T_w, \ C \to C_w \text{ as } y \to \infty \]
(6)

where, \(x \) is the coordinate measured along stretching surface, \(u_w \) is the stretching velocity, \(a \) is the linear stretching constant, \(c_p \) is the specific heat at constant pressure, \(\alpha \) is the thermal diffusivity, \(\nu \) is the kinematic viscosity of the fluid, \(\rho \) is density of fluid, \(D_b \) is the Brownian diffusion coefficient, and \(D_T \) is the thermophoresis diffusion coefficient.

Rosseland approximation (Brewster, 1992) has been considered for radiative heat flux and leads to the form as:

\[q_r = -\frac{4\sigma_\infty}{3\kappa^*} \frac{\partial T^*}{\partial y} \]
(7)

where, \(\sigma_\infty \) is the Stefan-Boltzmann constant and \(\kappa^* \) is the mean absorption coefficient. In order to obtain similar solutions we introduce a similarity parameter \(\sigma \) as:

\[\sigma = \sigma(t) \]
(8)

Such that \(\sigma \) is the time dependent length scale. In terms of this long scale, a convenient solution of equation (1) is considered to be:

\[v = -\frac{\nu}{\sigma} \]
(9)

Here \(\nu \) represents a dimensionless normal velocity at the plate which is positive for suction and negative for blowing. In order to obtain a similarity solution to the equations (1) to (5) with the boundary conditions (6) the following dimensionless variables are used:

\[\eta = \frac{y}{\delta}, \ u = U_\infty f - \dot{U}_\infty \frac{\nu}{\delta} \cdots - \frac{1}{\sigma} \theta \eta - \frac{T-T_w}{T_w-T_w} \phi(\eta) = \frac{C-C_w}{C_w-C_w} \]
(10)

By introducing equations (9) and (10) into equations (2)-(5):

\[\frac{\sigma}{v} \frac{\partial \sigma}{\partial t} \eta f' - \nu f' - f'' - Mf + 2Rg \]
(11)

\[\frac{\sigma}{v} \frac{\partial \sigma}{\partial t} \eta g' - \nu g' - g'' - 2Rg' - Mg \]
(12)

\[\frac{\sigma}{v} \frac{\partial \sigma}{\partial t} \eta \theta' - \nu \theta' - \left(\frac{1+K}{P_e} \right) \theta'' + E \left(f' + g'^' \right)^2 + N_p \theta' \theta' + N_l \theta'^2 \]
(13)

\[\frac{\sigma}{v} \frac{\partial \sigma}{\partial t} \eta \phi' - \nu \phi' - \frac{1}{L_e} \left(\phi'' + N_p \phi'' \right), \]
(14)

where, the notation primes denote differentiation with respect to \(\eta \) and the parameters are defined by:

Magnetic parameter \(M = \frac{\sigma B_0^2}{\rho a} \), Rotational parameter \(R = \frac{\Omega \sigma^2}{\nu} \), Radiation parameter \(K = \frac{16\sigma T_w^3}{3k\kappa^*} \), Prandtl number \(\Pr = \frac{\nu}{\alpha} \), Eckert number \(E_c = \frac{u_w^2}{c_p(T_w-T_c)} \), Lewis number \(L_e = \frac{\nu}{\alpha} \).
\[L_e = \frac{v}{D_b}, \] Brownian motion parameter \[N_b = \frac{(\rho c)_p D_b (C_w - C_\infty)}{\nu (\rho c)_f} \] and Thermophoresis parameter \[N_t = \frac{(\rho c)_p D_t (T_w - T_\infty)}{\nu T_\infty (\rho c)_f}. \]

The equations (11)-(14) are similar except for the term \[\frac{\sigma \partial \sigma}{\nu \partial t} \] where time \(t \) appears explicitly. Thus the similarity conditions require that \[\frac{\sigma \partial \sigma}{\nu \partial t} \] in equations (11)-(14) must be a constant quantity. Hence following the work of Sattar and Alam (1994) one can try a class of solutions of the equations (11)-(14) by assuming that:

\[\frac{\sigma \partial \sigma}{\nu \partial t} = c \text{(a constant)} \] (15)

By integrating Eq. (15):

\[\sigma = \sqrt{2cv t} \] (16)

where the constant of integration is determined through the condition that \(\sigma = 0 \) when \(t = 0 \). It thus appears from (16) that, by making a realistic choice of \(c \) to be equal to 2 in Eq. (15) the length scale \(\sigma \) becomes equal to \(\sigma = \sqrt{2vt} \) which exactly corresponds to the usual scaling factor considered for various unsteady boundary layer flows (Schlichting, 1968). Since \(\sigma \) is a scaling factor as well as a similarity parameter, any other value of \(c \) in Eq. (15) would not change the nature of solution except that the scale would be different. Finally, by introducing Eq. (15) with \(c=2 \) in Eqs. (11)-(14), the following dimensionless ordinary differential equations are obtained:

\[f'' + 2\xi f' - Mf + 2Rg_e = 0 \] (17)

\[g_s'' + 2\xi g_s' - 2Rf - Mg_s = 0 \] (18)

\[(1 + K) P_r^{-\frac{1}{2}} \theta'' + 2\xi \theta' + E_c \left(f' + g_s' \right)^2 + N_b \theta' \varphi' + N_t \theta'^2 = 0 \] (19)

\[\varphi'' + 2L_c \xi \varphi' + \frac{N}{N_b} \theta'' = 0 \] (20)

where, \(\xi = \eta + \frac{v_0}{2} \).

The corresponding boundary conditions:

\[f = 1, g_e = 0, \theta = 1, \varphi = 1, \text{ at } \eta = 0 \]
\[f = 0, g_e = 0, \theta = 0, \varphi = 0, \text{ as } \eta \to \infty \] (21)

3. Skin-friction coefficients, Nusselt number and Sherwood number

The quantities of chief physical interest are the skin friction coefficient, the Nusselt number \((N_u) \) and the Sherwood number \((S_h) \). The equation defining the components \((x, y) \) of wall
skin frictions are \(m(\frac{\partial u}{\partial y})_{y=0} \) and \(m(\frac{\partial w}{\partial y})_{y=0} \), which are proportional to \((\frac{\partial f}{\partial h})_{h=0} \) and \((\frac{\partial g}{\partial h})_{h=0} \) respectively. \(N_u \) is proportional to \((\frac{\partial T}{\partial y})_{y=0} \), hence we obtain \(N_u - q\phi(0) \); \(S_h \) is proportional to \((\frac{\partial C}{\partial y})_{y=0} \), so \(S_h - f\phi(0) \) is obtained. The numerical values of the skin-friction coefficients, \(N_u \) and \(S_h \) are sorted in Table 1 and Table 2.

4. Numerical Technique

The governing differential equations (17)-(20) are coupled with each other and it is almost impossible to have an analytical solution. Thus computations have been carried out based on numerical technique. The values of the governing parameters are chosen arbitrarily. The system of non-dimensional, nonlinear, coupled ordinary differential equations (17) to (20) with boundary condition (21) were solved numerically by using standard initial value solver (the shooting method). The Nactsheim-Swigert (1965) shooting iteration technique together with Runge-Kutta six order iteration scheme was taken, and the velocity, temperature and concentration were determined as function of \(\eta \). There are four asymptotic boundary conditions and hence four unknown surface conditions, \(f'(0), g_s'(0), \theta'(0) \) and \(\phi'(0) \).

5. Results and Discussion

The velocity profiles for \(x \) and \(z \) components of velocity, commonly known as non-dimensional primary \(f(\eta) \) and secondary velocities \(g_s(\eta) \) and temperature \(q(\eta) \) and concentration \(j(\eta) \) profiles are shown in Figures 2-14 for different values of \(M, R, K, P_r, E_c, L_c, N_b \) and \(N_b \) respectively. Figure 2 displays the dimensionless primary velocity distribution \(f(\eta) \) for different values of \(M \) where the other dimensionless parameters are retained as \(K=1.0, R=0.2, P_r=0.71, L_c=10, N_f=0.1, E_c=0.01 \) and \(\xi =0.5. \) It can be seen that the primary velocity profiles decrease as \(M \) increases. With regard to the effect of \(R \) on velocity distribution, Figure 3 shows that \(f(\eta) \) decreases as \(R \) increases, while the dimensionless secondary velocity distribution \(g_s(\eta) \) profiles increase as the \(M \) increases (Figure 4). Magnetic parameter has a strong impact on the velocity flow field as magnetic field exerts a more dominant role than increasing unsteadiness of the system. The locations of minimum velocities tend to go to lower by increasing the Magnetic parameter this is because the velocity (secondary) is still effectively increased owing to the retarding nature of the magnetic field and the upswing of the momentum boundary layer thickness. With regard to the effects of other parameters, \(g_s(\eta) \) profiles increase for increasing \(R \) (Figure 5), decrease with increase of \(E_c \) (Figure 6), \(N_f \) and \(N_b \) (Figure 7), and increase gradually with increase of \(K \) (Figure 8).
Figure 2. Primary velocity distribution for different values of Magnetic parameter (M).

Figure 3. Primary velocity distribution for different values of Rotational parameter (R).

Figure 4. Secondary velocity distribution for different values of Magnetic parameter (M).
Figure 5. Secondary velocity distribution for different values of Rotational parameter (R).

Figure 6. Secondary velocity distribution for different values of Eckert Number (E_c).

Figure 7. Secondary velocity distribution for different values of Brownian and Thermophoresis parameter (N_b & N_t).
Figure 8. Secondary velocity distribution for different values of Radiation Parameter (K).

Figure 9. Temperature distribution for different values of Radiation Parameter (K).

The dimensionless temperature distribution $\theta(\eta)$ for different values of K is shown in Figure 9, which indicates that the $\theta(\eta)$ profiles increase as K increases. Similar trends are observed for P_r (Figure 10) and N_r (Figure 11). Figures 12, 13 and 14 illustrate the dimensionless concentration distribution $\varphi(\eta)$ for different values of K, N_r and L_s, respectively. It is obvious that the $\varphi(\eta)$ profiles decrease with increase of K and L_s, while they increase with increase of N_r.

$E_r = 0.01$
$M = 2.0$
$P_r = 0.71$
$L_s = 10$
$N_r = 0.1$
$N_s = 0.1$
$R = 0.2$
$\xi = 0.5$
Figure 10. Temperature distribution for different values of Prandtl number \((P_r) \).

Figure 11. Temperature distribution for different values of Thermophoresis parameter \((N_t) \).

Figure 12. Concentration distribution for different values of Radiation Parameter \((K) \).
Figure 13. Concentration distribution for different values of Thermophoresis parameter \(N_t \).

Figure 14. Concentration distribution for different values of Lewis number \(L_e \).

Table 1 and Table 2 summarize the effects of various parameters on skin friction, \(N_u \) and \(S_h \). From Table 1, it can be observed that the skin friction components \(\tau_x \) increase as \(M \) and \(R \) increase, whereas \(N_u \) and \(S_h \) show very negligible change for \(E_c = 0.01, K = 1.0, L_c = 10, P_e = 10.0, N_h = 0.1, N_t = 0.1 \) and \(\xi = 0.5 \). Table 2 represents that as \(K \) and \(L_e \) increase, \(N_u \) decreases and \(S_h \) increases for \(E_c = 0.01, R = 0.2, M = 2.0, P_e = 10, N_h = N_t = 0.1 \) and \(\xi = 0.5 \). Also, the skin friction components show no effect on these parameters.
Table 1. Numerical values of τ_x, τ_z, N_u and S_h for $E_t = 0.01, K = 1.0, L_e = 10, P_r = 10.0, N_b = 0.1$, $N_i = 0.1$, and $\xi = 0.5$.

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>τ_x</th>
<th>τ_z</th>
<th>N_u</th>
<th>S_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>1.0</td>
<td>0.0601304</td>
<td>0.0241291</td>
<td>0.2472051</td>
<td>0.0746482</td>
</tr>
<tr>
<td>0.3</td>
<td>2.0</td>
<td>0.1202315</td>
<td>0.0361870</td>
<td>0.2471988</td>
<td>0.0746532</td>
</tr>
<tr>
<td>0.4</td>
<td>3.0</td>
<td>0.1804018</td>
<td>0.0482738</td>
<td>0.2472078</td>
<td>0.0746428</td>
</tr>
<tr>
<td>0.5</td>
<td>4.0</td>
<td>0.2406415</td>
<td>0.0603895</td>
<td>0.2472154</td>
<td>0.0746342</td>
</tr>
<tr>
<td>0.6</td>
<td>5.0</td>
<td>0.3009504</td>
<td>0.0725342</td>
<td>0.2472214</td>
<td>0.0746274</td>
</tr>
</tbody>
</table>

Table 2. Numerical values of t_x, t_z, N_u and S_h for $E_t = 0.01, R = 0.2, M = 2.0$, $P_r = 10, N_b = N_i = 0.1$ and $\xi = 0.5$.

<table>
<thead>
<tr>
<th>K</th>
<th>L_e</th>
<th>t_x</th>
<th>t_z</th>
<th>N_u</th>
<th>S_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>5.0</td>
<td>0.1202387</td>
<td>0.0241581</td>
<td>0.2732009</td>
<td>0.0440154</td>
</tr>
<tr>
<td>1.5</td>
<td>10.0</td>
<td>0.1202387</td>
<td>0.0241581</td>
<td>0.2305963</td>
<td>0.0933772</td>
</tr>
<tr>
<td>2.5</td>
<td>15.0</td>
<td>0.1202387</td>
<td>0.0241581</td>
<td>0.2112362</td>
<td>0.1145127</td>
</tr>
<tr>
<td>3.5</td>
<td>20.0</td>
<td>0.1202387</td>
<td>0.0241581</td>
<td>0.2004438</td>
<td>0.1259995</td>
</tr>
<tr>
<td>4.5</td>
<td>25.0</td>
<td>0.1202387</td>
<td>0.0241581</td>
<td>0.1936093</td>
<td>0.1331725</td>
</tr>
</tbody>
</table>

6. Conclusion

The thermal radiation effect on unsteady MHD heat and mass flow of a nanofluid past a stretching sheet in a rotating system is studied. The governing boundary layer equations are transferred to a system of non-linear ordinary coupled differential equations by similarity transformation. Numerical simulations are carried out for the mathematical model. The effects of various physical parameters such as Magnetic parameter, Rotational parameter, Radiation parameter, Prandtl number, Eckert number, Lewis number, Brownian motion parameter and Thermophoresis parameter on the heat and mass transfer characteristics are examined. The observed outcomes are briefly described below:

1. The primary velocity profiles decrease as the Rotational parameter increases, and vice versa in secondary velocity profiles.
2. As the Magnetic parameter increases, primary velocity profiles decrease whereas the secondary velocity profiles increase.
3. The secondary velocity and temperature profiles increase for increase in Radiation parameter whereas the concentration profiles show reverse patterns.
4. The secondary velocity profiles decreases as the Brownian and Thermophoresis parameters increase. Also temperature and concentration profiles increase as the Thermophoresis parameter increases.
5. The increase in Eckert number decreases the flow behaviour of secondary velocity profiles.
6. The temperature profiles increase as the Prandtl number increases, while the
concentration profiles decrease as the Lewis number increases.

Acknowledgment

One of the authors, Md. Shakhoath Khan, would like to acknowledge the National Science and Technology (NST) fellowship 2011 provided by the Ministry of Science and Technology, Government of People’s Republic of Bangladesh for conducting this research as part of M.Sc. study.

References

